TECHNICAL MANUAL
OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT AND
GENERAL SUPPORT MAINTENANCE MANUAL
(INCLUDING REPAIR PARTS AND SPECIAL TOOLS LISTS) FOR

MULTIMETER ME-498/U (HEWLETT-PACKARD MODEL 34702A) (NSN 6625-00-538-9794)

AND
INDICATOR ID-2101/U (HEWLETT-PACKARD MODEL 34750A) (NSN 6625-00-538-9758)

This manual includes copyright material reproduced by permission of the HEWLETT-PACKARD Company.
TECHNICAL MANUAL
HEADQUARTERS
DEPARTMENT OF THE ARMY
Washington, DC 14June1979

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL
(INCLUDING REPAIR PARTS AND SPECIAL TOOLS LISTS)
FOR
MULTIMETER ME-4981U (HEWLETT-PACKARD MODEL 34702A)
(NSN 6625-00-538-9794)
AND
INDICATOR ID-21011U (HEWLETT-PACKARD MODEL 34750A)
(NSN 6625-00-538-9758)

REPORTING OF ERRORS

You can improve this manual by recommending improvements using DA Form 2028-2 located in the back of the manual. Simply tear out the self-addressed form, fill it out as shown on the sample, fold it where shown, and drop it in the mail.

If there are no blank DA Forms 2028-2 in the back of your manual, use the standard DA Form 2028 (Recommended Changes to Publications and Blank Forms) and forward to Commander, US Army Communications and Electronics Materiel Readiness Command, ATTN: DRSEL-ME-MQ, Fort Monmouth, NJ 07703.

In either case a reply will be forwarded direct to you.

[^0]
TABLE OF CONTENTS

PART ONE

Section			Page
0.	INTRODUCTION..		. 0 -1
	GENER	dal information	.1-1
	1-1.	Description.	.1-1
	1-6.	Specifications	. 1-3
	1-8.	Options	..1-3
	1-10.	Accessories Available (See Fiqure 1-2)	..1-3
	1-11.	Instrument and Manual Identification	.1-3
Section II.			Page
	INSTALLATION.		.2-1
	2-1.	Introduction	.2-1
	2-3.	Initial Inspection.	2-1
	2-5.	Power Requirements	..2-1
	2-7.	Grounding Requirements2-2
	2-10.	Environmental Requirements2-2
	2-12.	Instrument Mounting	[.2-2
	2-13.	Bench Use	...2-2
	2-15.	Rack Use	...2-2
	2-17.	Repackaging for Shipment	..2-2
	2-21.	Power Cords and Receptacles.	..2-3
Section III.			Page
	OPERATING INSTRUCTIONS		. 3-1
	3-1.	Introduction.	..3-1
	3-3.	Rear Panel Features	..3-1
	3-5.	Warm-Up.	..3-1
	3-7.	Operation with Plug-On Module	s..3-1
Section			Page
4-1.	IV. THEORY OF OPERATIO		4-1
4-3.	Basic Measurement Sequence		4-1
4-5.	Analog Circuits		4-1
4-4.	Input Amplifier		4-1
4-8.	Integrator..		4-2
4-10.	Zero Detect Circuits.		4-2
4-12.	Auto-Zero Cycle..		4-2
4-14.	Digital Processing Circuits..		4-2
4-17.	Data Clock (Refer to		..4-4
4-19.	Timing Generator Circuit (See		
			.4-4
4-21.	Zero Detect and Data Transfer(Refer to Figure 4-10)............		
			..4-4
4-23.	Data Accumulator and Storage (Refer to Figure 7-7).		
			..4-6

Section		Page
4-25.	Data Display and Control Circuits	
	(Refer to Fiqure 4-11).	4-6
4-27.	Reset Timing (See Figure 4-12)	4-7
4-29.	Least Significant Digit Blank	
	(Refer to Figure 7-8)	4-7
Section		Page
V.	MAINTENANCE	...5-1
5-1.	Introduction	.5-1
5-3.	Operational Checks	5-1
5-6.	Adjustment Procedures.	..5-1
5-8.	Cover Removal	5-2
5-10.	Adjustment Locator	5-2
5-12.	Power Supply Adjustment	5-2
5-13.	Input Amp. Offset Adjustment	5-2
5-14.	Zero Detect Comparator Offset	5-2
5-15.	Zero Detect Hysteresis	
		...5-2
5-16.	Reference Voltage Adjustments5-3
Section		Page
VI.	IDENTIFICATION OF PARTS6-1
6-1.	Introduction6-1
6-4.	Deleted	
6-6.	Deleted	
6-8.	Proprietary Parts	6-1
Section		Page
VII.	CIRCUIT DIAGRAMS AND	
	TROUBLESHOOTING7-1
7-1.	Introduction	7-1
7-3.	Troubleshooting	7-1
7-4.	Troubleshooting Trees	7-1
7-6.	Troubleshooting Procedures	7-1
7-8.	Functional Block Diagram	
	(Figure 7-4).	7-1
7-10.	Timing Circuits (Figure 7-5)	7-1
7-12.	Schematic Diagrams (Figures	
	7-6, 7-7 and 7-8)7-1
7-14.	Component Location Diagrams	7-1
APPENDIXES		
A	Difference Data Sheet	..A-1
B	References..	..B-1
C.	Maintenance Allocation	C-1
D	Repair Parts And Special	
	Tools List.	... D-1

LIST OF TABLES

Table		Page
1-1.	Specifications	1-2
1-2.	General Information	1-3
3-1.	34721B/5055A Output Codes	3-1
5-1.	Recommended Test Equipment	...5-1
5-2.	DC Accuracy	5-2
5-3(a).	AC Accuracy (45 Hz and 20 kHz .	5-5
5-3(b).	AC Accuracy (100 kHz).	5-6
5-4.	Accuracy Test	5-7
6-1.	Identification of Parts	6-3

LIST OF ILLUSTRATIONS

Figure		Page
1-1	Instrument Serial Number	.1-1
2-1.	Installation of the Model 34702A.	2-1
3-1.	Front add Rear Panel Features.	3-0
4-1.	Block Diagram.	4-0
4-2.	ACV/DCV Attenuator.	4-1
4-3.	W Converter	4-2
4-4.	AC/DC Converter	4-3
4-5.	Impedance Converter.	4-4
5-1.	Input Impedance Test	5-3
5-2.	Effective Common Mode Rejection.	5-3
5-3.	Normal Mode Rejection.	5-4
5-4.	Removal from Case	5-8
5-5.	Adjustment Locator	5-9
7-1.	AC Converter Troubleshooting Tree7-3/7-4
7-2.	W Converter Troubleshooting Tree......7-3/7-4
7-3.	34702A Schematic.	...7-8/7-6

TABLE OF CONTENTS

PART TWO

Section			Page . 1-1
T.	GENERAL INFORMATION.		
	1-1.	Description	..1-1
	1-6.Spec	cifications	.1-3
	1-8.	Options	...1-3
	1-10.	Accessories Available	
		(See Figure 1-2)	...1-3
	1-11.	Instrument and Manual	
		Identification	..1-3
Section II.			Page
	INSTALLATION		.2-1
	2-1.	Introduction.	2-1
	2-3.	Initial Inspection.	2-1
	2-5.	Power Requirements.	2-1
	2-7.	Grounding Requirements ...	2-2
	2-10.	Environmental Requirements2-2
	2-12.	Instrument Mounting.......	.2-2
	2-13.	Bench Use	2-2
	2-15.	Rack Use	2-2
	2-17.	Repackaging for Shipment.	2-2
	2-21.	Power Cords and Receptacles.	..2-3
Section III.			Page
	OPERATING INSTRUCTIONS.		[.3-1
	3-1.	Introduction.	.3-1
	3-3.	Rear Panel Features	. 3-1
	3-5.	Warm-Up.	.3-1
	3-7.	Operation with Plug-On Modules	.3-1
Section			Page
	THEORY OF OPERATION.		4-1
	4-1.	Introduction.	4-1
	4-3.	Basic Measurement Sequence	4-1
	4-5.	Analog Circuits	4-1
	4-6.	Input Amplifier	4-1
	4-8.	Integrator.	4-2
	4-10.	Zero Detect Circuits.	4-2
	4-12.	Auto-Zero Cycle.	4-2
	4-14.	Digital Processing Circuits.	4-2
	4-17.	Data Clock (Refer to	
		Figure 4-8)............	4-4
	4-19.	Timing Generator Circuit (See	
		[Figure 7-8)	4-4
	4-21.	Zero Detect and Data Transfer Circuits (Refer to Figure 4-10)..	.4-4
	4-23.	Data Accumulator and Storage	
		(Refer to Figure 7-7).......	..4-6

Section		Page	
4-25.	Data Display and Control		
	(Refer to Figure 4-11).	4-6	
4-27.	Reset Timing (See Figure4-12).	4-7	
4-29.	Least Significant Digit Blank (Refer to Fiqure 7-7)		

Section		Page
V.	MAINTENANCE	...5-1
5-1.	Introduction	5-1
5-3.	Operational Checks	5-1
5-6.	Adjustment Procedures.	5-1
5-8.	Cover Removal	5-2
5-10.	Adjustment Locator.	5-2
5-12.	Power Supply Adjustment	5-2
5-13.	Input Amp. Offset Adjustment	.5-2
5-14.	Zero Detect Comparator Offset	5-2
5-15.	Zero Detect Hysteresis	
	Adjustment.	5-2
5-16.	Reference Voltage Adjustments	.5-3

Section		Page
VI.	IDENTIFICATION OF PARTS	..6-1
6-1.	Introduction	6-1
6-4.	Deleted	
6-6.	Deleted	
6-8.	Parts Changes .	6-1
6-10.	Proprietary Parts...	.6-1

Section		Page
VII.	CIRCUIT DIAGRAMS AND	
	TROUBLESHOOTING	.7-1
7-1.	Introduction	7-1
7-3.	Troubleshooting	7-1
7-4.	Troubleshooting Trees	7-1
7-6.	Troubleshooting Procedures.	7-1
7-8.	Functional Block Diagram (Figure 7-4)	7-1
7-10.	Timing Circuits (Fiqure 7-5).	7-1
7-12.	Schematic Diagrams (Figures	
	7-6, 7-7 and (7-8)	...7-1
7-14.	Component Location Diagram	7-1

Appendix	
D.	Page

Table of Contents

LIST OF ILLUSTRATIONS

Figure	Page
1-1.	Plug-On Modules which can be used
	with the 34750A Display Module1-1
1-2.	Accessories Available for use with 34750A.. 1-2
1-3.	Instrument Serial Number (on rear panel) .1-3
2-1.	Voltage Selection...................................2-1
2-2.	Rick Mount Kits2-2
2-3.	Power Receptacles2-3
3-1.	34750A Rear Panel................................3-1
4-1.	Basic Block Diagram of 34750A...............4-0
4-2.	Simplified Diagram of the
	Input Amplifier4-1
4-3.	Simplified Diagram of the
	Integrator Circuit....................................4-2
4-4.	Simplified Diagram of Zero Detect
	Circuits ...4-2
4-5.	34750A Circuits shown in Auto-Zero
	Mode ...4-3
4-6.	Block Diagram of Typical ASM.................4-3
4-7.	ASM Simplified Block Diagram.................4-4
4-8.	Data Clock...4-4

Figure		Page
4-9.	34750A Flow Chart	4-5
4-10.	Zero Detect and Data Transfer	
	Timing	4-6
4-11.	Data Display Circuits	4-6
4-12.	Reset Tuning	4-7
5-1.	11456A Readout Test Card	..5-1
5-2.	Cover Removal	5-2
5-3.	Zero Detect Comparator Offset	
	Adjustment	...5-2
5-4.	Chassis Mounted Component and	
	Adjustment Locator	. $5-3$
7-1.	Power Supply Troubleshooting	
	Tree Analog Troubleshooting Tree.	7-8/7-4
7-2.		. 7.7 7-5
7-3.	Digital Troubleshooting Tree....	7-7/7-8
7-4.	Functional Block Diagram....	7-9/7-10
7-5.	Timing Waveforms.	.7-1/7-12
7-6.	Analog Signal Processor.	7-13/7-14
7-7.	Digital Signal Processor.	7-14/7-16
7-8.	Power Supply.	7-17/7-18

LIST OF TABLES

Table		Page
1-1.	3470A Series Signal Conditioning	
	Modules	1-3
1-2.	Available Options	1-3
5-1.	Recommended Test Equipment	5-1
5-2.	Operational Checks	5-1
6-1.	Identification of Parts	6-2
7-1.	Troubleshooting Trees	7-1

PART ONE

OPERATING AND SERVICE MANUAL

Binder part No. 34740-90011
(Includes cover sheet)
Manual Part No. 34740-90012 or 34750-90012
(Binder, System Introduction and Display Manual)
MODEL 3470
MEASUREMENT SYSTEM

IMPORTANT NOTICE

This instruction manual requires no change sheet. Any change information has already been integrated into the manual by page revisions. Revised pages have a revision letter which can be found on the lower corner of the page. Reference may also be made to Section VIII of each manual where backdating information for earlier instruments can be found.

Copyright Hewlett-Packard Company 1972

P.O. Box 301, Loveland, Colorado 80537 U.S.A.

PACKARD

CERTIFICATION

Hewlett-Packard Company certifies that this instrument met its published specifications at the time of shipment from the factory. Hewlett-Packard Company further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from the date of shipment, except that in the case of certain components, if any, listed in Section I of this operating manual, the warranty shall be for the specified period. Hewlett-Packard will, at its option, repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard, and provided the proper preventive maintenance procedures as listed in this manual are followed. Repairs necessitated by misuse of the product are not covered by this warranty. NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD IS NOT LIABLE FOR CONSEQUENTIAL DAMAGES.

If this product is sold as part of a Hewlett-Packard integrated instrument system, the above warranty shall not be applicable, and this product shall be covered only by the system warranty.

Service contracts or customer assistance agreements are available for Hewlett-Packard products.
For any assistance, contact your nearest Hewlett-Packard Sales and Service Office, Addresses are provided at the back of this manual.

INTRODUCTION

The 3470 Measurement System is a series of modules that may be plugged together to form several different measuring instruments, including both line powered and battery powered versions.

A mainframe display module is connected to a bottom plug-on function module to form a complete instrument.

The BCD and/or Battery plug-on module may be added between the display and function modules as desired.

Refer to the Operating and Service Manual of the plugon module to be used with the display module for the operating instructions, incoming inspection, and adjustment procedures of the instrument as a whole.

Possible Instrument Configurations

SECTION 0
 INTRODUCTION

0-1. SCOPE.

a. This manual in Part 1, describes Multimeter ME-498/U fig. 3-1) and provides instructions for operation and maintenance. Throughout this manual the ME-498/U is referred to as the Hewlett-Packard Model 34702A.
b. Part 2 describes Indicator ID-2101/U
(fig.1-1, Part 2). This display module is referred to as the Hewlett-Packard Model 34750A.

0-2. INDEXES OF PUBLICATIONS.

a. DA Pam 310-4. Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes, or additional publications pertaining to the equipment.
b. \quad DA Pam 310-7. Refer to DA Pam 310-7 to determine whether there are modification work orders (MWO's) pertaining to the equipment.

0-3. FORMS AND RECORDS.

a. Reports of Maintenance and Unsatisfactory Equipment. Maintenance forms, records, and reports which are to be used by maintenance personnel at all maintenance levels are listed in and prescribed by TM 38-750.
b. Report of Packaging and Handling Deficiencies. Fill out and forward DD Form 6 (Packaging

Improvement Report) as prescribed in AR 70058/NAVSUPINST 4030.29/AFR 71-13/MCOP40 30.29A and DLAR 4145.8.
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 55-38/NAVSUPINST $4610.33 B / A F R \quad 7518 / \mathrm{MCO}$ P4610.19C and DLAR 4500.15.

0-4. REPORTING EQUIPMENT IMPROVEMENT RECOMMENDATIONS (EIR).

EIR's will be prepared using SF 368 (Quality Deficiency Report). Instructions for preparing EIR's are provided in TM 38-750, the Army Maintenance Management System. EIR's should be mailed direct to Commander, US Army Communication and Electronics Materiel Readiness Command, ATTN: DRSEL-ME-MQ, Fort Monmouth, NJ A reply will be furnished direct to you.

0-5. ADMINISTRATIVE STORAGE.

Administrative storage of equipment issued to and used by Army activities shall be in accordance with TM 740-90-1 and paragraph 2-8

0-6. DESTRUCTION OF ARMY ELECTRONICS MATERIEL.

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This manual contains installation and operating instructions as well as maintenance information which includes performance checks for the Model 34702A. A schematic diagram, theory of operation, and troubleshooting information are provided for use in maintaining the 34702A Multimeter Module.

1-3. DESCRIPTION.

1-4. The Hewlett-Packard Model 34702A Multimeter is a signal conditioning module that may be connected to a Model 34740A or 34750A Display Module, to measure AC Voltage, DC Voltage, or resistance. The AC and DC volts functions provide four decade ranges from I V to 1000 V . Six resistance ranges from 100 full scale to 10 MQ full scale are provided by the " Ω (fy)" function. Each available range of the Model 34702A has 100\% overranging capability except the 1000 V range which has 20\%.

CAUTION

Overload protection circuits allow up to 1200 V peak to be applied to the INPUT V terminals without damaging the instrument. Up to 350 V can be applied to the INPUT S terminals without damaging the instrument. No more than 500 V should be applied between LO and Chassis. Do not apply voltage between LO and Chassis when using the 34721A or 34721B BCD Module. These modules connect LO to Chassis when attached to the Model 34 702A.

1-5. SPECIFICATIONS AND GENERAL INFORMATION.

1-6. Table 1-1 lists specifications for the Model 34702A Multimeter. This table supersedes all other previously printed specifications. Procedures are provided in Section V to verify performance of the instrument to its specifications and to readjust the instrument if required. The accuracy specifications apply for ambient temperatures of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. For temperatures outside this range, a temperature coefficient factor (listed in Table 1-1)] must be used.

1-7. Table 1-2 lists general information relating to the instrument.

1-8. INSTRUMENT AND MANUAL IDENTIFICATION.

1-9. A three-section serial number ($x x x x A x x x x x$) is used to identify your Model 34702A. Figure 1-1 illustrates the meaning of the three parts of the number.

1-10. This manual is kept up-to-date with revised pages. If the serial number of your instrument is lower than the one on the title page of this manual, refer to the backdating information in Appendix A which adapts this manual to your instrument. All correspondence with Hewlett-Packard Company should include the complete serial number.

Figure 1-1. Instrument Serial Number.

Table 1-1. Specifications. (Measured using 34740A or 34750A Display Unit)

DC VOLTAGE34740A	
Performance:	
Accuracy ($+23^{\circ} \mathrm{C}$ t $5^{\circ} \mathrm{C}$), $\leq 95 \% \mathrm{RH}$)	
	$\pm(0.03 \%$ of reading $+.01 \%$ of range)
90 days	$\pm(0.04 \%$ of reading $+.01 \%$ of range)
6 mo .	$\pm(0.05 \%$ of reading $+.02 \%$ of range)
yr.	$\pm(0.06 \%$ of reading $+.02 \%$ of range)

Stability (24 hours, $+23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$) $\pm(0.01 \%$ of reading $+0.005 \%$ of range $)$

Temperature Coefficient $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
DC voltage: $t(0.0035 \%$ of reading $+0.001 \%$
of range) ${ }^{\circ} \mathrm{C}$.
Input Characteristics:
Input resistance
1 and 10 V ranges: $11.11 \mathrm{M} \pm 0.2 \%$
100 V range: $10.1 \mathrm{M} \pm 0.2 \%$
1000 V range: $10 \mathrm{M} \pm 02 \%$
Effective Common Mode Rejection (1 k unbalance)
DC: $>80 \mathrm{~dB}$.*
Normal Mode Rejection
50 Hz (Option 050): $>60 \mathrm{~dB}(50 \mathrm{~Hz} \pm 0.1 \%)$
60 Hz (Option 060): $>60 \mathrm{~dB}(60 \mathrm{~Hz} \pm 0.1 \%)$
*Does not apply when BCD Module is used.

AC VOLTAGE

34740A
Performance:
Accuracy ($+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \leq 95 \% \mathrm{RH}$)
30 days
45 Hz to $20 \mathrm{kHz} \quad \pm(0.25 \%$ of reading $+.05 \%$ of range)
20 kHz to $100 \mathrm{kHz} \pm$ (075% of reading $+.05 \%$
90 days
45 Hz to $20 \mathrm{kHz} \quad \pm(0.30 \%$ of reading $+.05 \%$ of range)
20 kHz to $100 \mathrm{kHz} \pm(0.80 \%$ of reading $+.05 \%$ of range)
6 mo .
45 Hz to $20 \mathrm{kHz} \quad \pm(0.35 \%$ of reading $+.05 \%$ of range)
20 kHz to $100 \mathrm{kHz} \pm(085 \%$ of reading $+.05 \%$ of range)
1 yr .
45 Hz to $20 \mathrm{kHz} \quad \pm(0.50 \%$ of reading $+0.05 \%$ of range)
20 kHz to $100 \mathrm{kHz} \pm(1.0 \%$ of reading $+0.05 \%$ of range)
Temperature Coefficient $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
AC voltage: \pm ($0,03 \%$ of reading $+0.001 \%$ of range) ${ }^{1} \mathrm{C}$.

Stability (24 hours, $+23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$)
AC voltage: 45 Hz to $20 \mathrm{kHz}: \pm(0.15 \%$ of reading $+0.05 \%$ of range)
20 kHz to $100 \mathrm{kHz}: \pm$ (0.4% of reading
$+0.05 \%$ of range)
Response Time: < 2 s within $\pm 0.3 \%$ of final value or 20 counts, whichever is greater.

Input Characteristics:

Input impedance
1 and 10 V ranges: $11.11 \mathrm{M} \pm 02 \% / / 80 \mathrm{pF}$ max.
100 V range: $10.1 \mathrm{M} \pm 0.2 \% / / 80 \mathrm{pF}$ max.
1000 V range: $10 \mathrm{M} \pm 0.2 \% / 180 \mathrm{pF}$ max.
OHMS

34740A

Performance:
Accuracy ($+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \leq 95 \% \mathrm{RH}$)
30 days
10 MO range $\quad \pm(0.25 \%$ of reading $+0.02 \%$ of range)
All other ranges $\pm(0.05 \%$ of reading $+0.02 \%$ of range)
90 days
10 M range $\pm(0.30 \%$ of reading $+0.02 \%$ of range)
All other ranges $\pm(0.06 \%$ of reading $+0.02 \%$ of range)
6 mo.
10 M range $\pm(0.35 \%$ of reading $+0.03 \%$ of range)
All other ranges $\pm(0.07 \%$ of reading $+0.03 \%$ of range)

1 yr.
10 M range $\quad \pm(0.50 \%$ of reading $+0.03 \%$ of range)
All other ranges $t(0.11 \%$ of reading $+0.03 \%$ of range)
Stability (24 hours, $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$)
10 Mn range $\pm(0.1 \%$ of reading $+0.01 \%$ of range)
All other ranges $\pm(0.02 \%$ of reading $+0.02 \%$ of range)

Temperature Coefficient $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
Ω
10 Ml range: $\pm(0.035 \%$ of reading $+0.001 \%$ of range) / C.
All other ranges' $\mathrm{t}(0.006 \%$ of reading $+0.001 \%$ of range) / C.

DC Voltage

34750A
Performance:
Accuracy ($+23^{\circ} \mathrm{C} \pm 5^{0} \mathrm{C}$), $\leq 95 \% \mathrm{RH}$)
30 days $\pm(0.025 \%$ of reading $+.005 \%$ of range $)$ 90 days $\pm(0.035 \%$ of reading $+.005 \%$ of range $)$ $6 \mathrm{mo} . \pm(0.045 \%$ of reading $+.007 \%$ of range $)$ 1 yr . $\quad \pm(0.06 \%$ of reading $+.01 \%$ of range $)$

NOTE: Due to temperature change inside the instrument between line and battery operation, the references must be adjusted when changing modes to achieve these specifications
Stability (24 hours, $+23^{\circ} \mathrm{C} \pm 1^{0} \mathrm{C}$)
DC voltage: \pm (.008\% of reading i $.004 \%$ of range)
Temperature Coefficient $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
DC voltage: $\pm(0.0025 \%$ of reading $+0.0002 \%$ of range) / C
Input Characteristics
Input resistance
1 and 10 V ranges: $11.11 \mathrm{M} \pm 0.2 \%$
100 V range: $10.1 \mathrm{M} \pm .0 .2 \%$
1000 V range: $10 \mathrm{M} \pm 0.2 \%$
Effective Common Mode Rejection (1 kO unbalance) DC: >80 dB.*
*Does not apply when BCD Module is used

Table 1-1. Specifications (Cont'd).

```
Normal Mode Rejection
    50 Hz (Option 050): >60 dB (50 Hz \(\pm 0.1 \%\) )
    60 Hz (Option 060): >60 dB (60 Hz \(\pm 0.1 \%)\)
AC VOLTAGE
34750A
    Performance:
Accuracy (+230 + 5C, A 95\% RH)
        30 days
            45 Hz to \(20 \mathrm{kHz} \quad \pm(0.25 \%\) of reading \(+.05 \%\)
                    of range)
            20 kHz to \(100 \mathrm{kHz} \pm(.75 \%\) of reading \(+.05 \%\)
                        of range)
        90 days
            45 Hz to \(20 \mathrm{kHz} \quad \pm\) (.3\% of reading \(+.05 \%\)
                    of range)
            20 kHz to \(100 \mathrm{kHz} \pm\) (.8\% of reading \(+.05 \%\)
                        of range)
        6 mo.
            45 Hz to \(20 \mathrm{kHz} \quad \pm(.35 \%\) of reading \(+.05 \%\)
                    of range)
            20 kHz to \(100 \mathrm{kHz} \pm(.85 \%\) of reading \(+.05 \%\)
                                    of range)
        1 yr .
            45 Hz to \(20 \mathrm{kHz} \pm(0.50 \%\) of reading \(+0.05 \%\)
                    of range)
            20 kHz to \(100 \mathrm{kHz} \pm\) (1.0\% of reading \(+0.05 \%\)
                        of range)
```

 Input Characteristics:
 Input impedance
 1 and 10 V ranges: \(11.11 \mathrm{M} \pm 0.2 \% / 1 / 80 \mathrm{pF}\) max.
 100 V range: \(10.1 \mathrm{M} \pm 0.2 \% 1 / 80 \mathrm{pF}\) max.
 1000 V range: \(10 \mathrm{M} \pm 0.2 \% / / 80 \mathrm{pF}\) max.
 OHMS
34750A
Performance:
Accuracy $\left(+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \leq 95 \% \mathrm{RH}\right)$
30 days
10 M range $\pm(0.25 \%$ of reading $+0.015 \%$
of range)
All other ranges $\pm(0.045 \%$ of reading $+0.015 \%$
of range)
90 days
10 M range $\pm(0.3 \%$ of reading $+0.015 \%$
of range)
All other ranges $\pm(0.055 \%$ of reading $+0.015 \%$
of range)
6 mo.
10 M range $\pm(0.35 \%$ of reading $+0.02 \%$
of range)
All other ranges $\pm(0.065 \%$ of reading $+0.02 \%$
of range)
1 yr
10 M range $\pm(0.50 \%$ of reading $+0.02 \%$
of range)
All other ranges $\pm(0.11 \%$ of reading $+0.02 \%$
of range)
NOTE: Due to temperature change inside the instrument
between line and battery operation, the references
must be adjusted when changing modes to achieve
these specifications.
Stability (24 hours, $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$)
10 M range $\pm(0.1 \%$ of reading $+0.009 \%$ of range $)$
All other ranges $\pm(0.2 \%$ of reading $+0.015 \%$ of range $)$
Temperature Coefficient $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
10 M range: $\pm(0.035 \%$ of reading $+0.001 \%$
of range) $/{ }^{\circ} \mathrm{C}$
All other ranges: $\pm(0.006 \%$ of reading $+0.001 \%$
of range) $/{ }^{\circ} \mathrm{C}$

Table 1-2. General Information.

dC voltage
 34740A

Ranges:

Range	Full Scale Reading	Maximum Reading
1 V	$\pm 1.0000 \mathrm{~V}$	$\pm 1.9999 \mathrm{~V}$
10 V	$\pm 10.000 \mathrm{~V}$	$\pm 19.999 \mathrm{~V}$
100 V	± 100.00	$\pm 199.99 \mathrm{~V}$
1000 V	+1.0000 V	$\pm 1200.0 \mathrm{~V}$
Overrange		

1000 V range: 20%.
All other ranges: 100% (19999 max reading)
Range Selection: manual pushbuttons

Performance:

Reading Rate
Option $050(50 \mathrm{~Hz}): 8 / \mathrm{s}$ fixed Option 060 (60 Hz): $5 / \mathrm{s}$ fixed

Input Characteristics:
Input terminals: floating pair.*
Maximum input voltage
High to low 1200 V
Low to Chassis $\pm 500 V^{*}$
*Does not apply when BCD Module is used.

AC VOLTAGE

34740A

Ranges:

	Full Scale Reading	Maximum Reading
1 V	1.0000 V	1.9999 V
10 V	10.000 V	19.999 V
100 V	100.001	199.99 V
1000 V	1.0000 V	1200.0 V

Table 1-2. General Information (Cont'd).

Overrange 1000 V rang All other ra Range selectio Reading rate Option 050 Option 060 Input terminals Maximum Inpu High to Low Low to Cha	20 100\% (199999 manual pushbutto Hz): 4/s fixed Hz). $\quad 5 / \mathrm{s}$ fixed ating pair * tage 1200 V $\pm 500 \mathrm{~V}$.* apply when BC	used.
Range	Full Scale Reading	Maximum Reading
1 V 10 V 100 V 1000 V	1.00000 V 10.0000 V 100.000 V 1000.00 V	$\begin{aligned} & \hline \hline 1.99999 \mathrm{~V} \\ & 19.9999 \mathrm{~V} \\ & 199.999 \mathrm{~V} \\ & 1200.00 \mathrm{~V} \\ & \hline \end{aligned}$
Overrange 1000 V ran All other ran Range selectio Frequency ran Input terminals: Maximum input High to Lo On 1 V imum Low Chass	20\% s. 100% (19999 manual pushbutto 45 Hz to 100 kHz ating pair tage 200 V rms excep $2.5 \times 10^{5} \mathrm{~V} \mathrm{~Hz}$ ction of 300 V rm $+500 \mathrm{~V}$	
34750A Ranges: $\begin{array}{r} 100 \Omega \\ 1 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \\ 1000 \mathrm{k} \Omega \\ 10 \mathrm{M} \Omega \end{array}$	100.000Ω $1.00000 \mathrm{k} \Omega$ $10.0000 \mathrm{k} \Omega$ $100.000 \mathrm{k} \Omega$ $1000.00 \mathrm{k} \Omega$ $10.0000 \mathrm{M} \Omega$	$\begin{aligned} & \Omega \\ & -\Omega \\ & -\Omega \\ & 0 \end{aligned}$
Overrange Range: Input term input t	0% on all range on manual push floating pair (d nals).	voltage
Current through measured resistor: 10 mA on 100Ω range decreasing one decade per successively higher range.		
Overload wave).	$\text { tion- t } 350 \vee \text { pe }$	s sine

SECTION II

INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains installation and shipping information for the Model 34702A.

2-3. INITIAL INSPECTION.

2-4. The Model 34702A should be inspected upon receipt for damage that might have occurred in transit. If there is damage due to shipping, file a claim with the carrier. If there are other electrical or mechanical deficiencies refer to the warranty statement on the back of the title page. Use the procedures provided in Section V to check instrument performance.

2-5. CONNECTION TO THE DISPLAY MODULE.

2-6. Referring tb Figure 2-1, connect the Model 34702A to the Display Module using the following procedure:
a. Pull the side locks on the Display Module to the rear.
b. Position the Display Module and 34702A together so that the tabs and slots on the sides of the two units interlock.
c. Push the side locks toward the Display Module. This pulls the two units together and locks them.

2-7. If a 34720A Battery Module or a 34721B BCD Module is to be used between the display module and the 34702A then the side locks on this middle module hold the 34702A.

2-8. REPACKAGING FOR SHIPMENT.

2-9. If the instrument is to be shipped to HewlettPackard for service or repair, attach a tag to the instrument describing the work to be accomplished and identifying the owner of the instrument. Identify the instrument by serial number, model number and name in any correspondence. If you have any questions, contact your local Hewlett-Packard Sales and Service Office.

2-10. If the original shipping container is to be used, place the instrument in the container with appropriate packing material and seal the container well with strong tape or metal bands.

2-11. If an -hp- container is not to be used, use a heavy carton or wooden box with an inner container. Wrap the instrument with heavy paper or plastic and place cardboard strips across the face for protection before placing the instrument in the inner container. Use packing material around all sides of the inner container, and seal the outer container well with strong tape or metal bands. Mark the container with "DELICATE INSTRUMENT" or "FRAG-
ILE."

Figure 2-1. Installation of the Model 34702A

Figure 3-1. Front and Rear Panel Features.

SECTION III

OPERATING INSTRUCTIONS

3-1. INTRODUCTION.

3-2. This section contains instructions and information which will assist you in proper operation of the Mode 34702A Multimeter Module. A Model 34740A or 34750A Display Module is required to operate the Model 34702A Included in this section is identification of controls, indicators and connectors; operating procedures; and BCD output code information (for use in conjunction with the 34721B BCD Module).

3-3. PANEL FEATURES.

3-4. The panel features of the instrument are described in Figure 3-1.

3-5. FRONT PANEL OPERATION.

3-6. There are two manual controls; the function switch and the range switch (See Figure 3-1). Each range, except the 1000 V range, has 100% overranging capability; e.g. using a four digit display module 1.9999 V can be measured on the IV range. The display blanks at 200% of range, indicating an overload.

Overload protection circuits allow up to 1200 V peak to be applied to the INPUT V terminals without damaging the instrument. Up to 350 V can be applied to the INPUT Ω.
terminals without damaging the instrument. No more than 500 V should be applied between LO and Chassis (Grnd.). Do not apply voltage between LO and Chassis when using the 34721A or 34721B BCD Module. These modules connect LO to Chassis when attached to the Model 34702A.

3-7. DC Voltage Measurement.

$3-8$. Set the Function switch to DCV, select the required voltage range, and apply the voltage to be measured to the INPUT V terminals.

3-9. AC Voltage Measurement.

3-10. Set the function switch to ACV, select the required voltage range, and apply the voltage to be measured to the INPUT V terminals.

3-11. Resistance Measurement.

3-12. Set the function switch to Ω (92), select the required resistance range, and connect the device to be measured to the INPUT Ω terminals.

3-13. 34721B/5055A OUTPUT CODES.

3-14. Output codes obtained from a 34721B BCD Module when used in conjunction with the Model 34702A and a display module are listed in Table 3-1. Refer to the 34721B Operating and Service Manual for further information regarding the BCD Module

Table 3-1. 34721B5055A Output Codes

Number Printed	Polarity Overload Column 9	Range Column 8		Function Column 7	Overrange Column 6	Digits Columns 1 through 5
		k Ω	Volts			
0	+	$\begin{array}{r} 10000 \\ 1000 \end{array}$	1000	$\begin{gathered} \mathrm{DCV} \\ \mathrm{ACV} \\ \mathrm{k} \Omega \end{gathered}$	underrange overrange	0
1						1
2						2
3		100	100			3
4		10	10			4
5		1	1			5
6		. 1	. 1			6
7						7
8						
9						9

Figure 4-1. Block Diagram.

SECTION IV

THEORY OF OPERATION

4-1. INTRODUCTION.

4-2. This section contains a description of the Model 34702 Multimeter in simplified form followed by a more detailed functional description. A detailed circuit schematic is shown in Figure 7-3.

4-3. BLOCK DIAGRAM DESCRIPTION.

4-4. The circuits of the Model 34702A can be divided into four major blocks shown in Figure 4-1.

4-5. ACV And DCV Attenuator.

4-6. The ACV/DCV Attenuator reduces the level of the signal applied to the input so that it can be measured by the 34740A or 34750A Display Module. The signal can be attenuated by a factor of I, 10, 100 or 1000.

4-7. Current Source.

4-8. Resistance measurements are made by passing a known current through the resistor being measured and then measuring the voltage developed across the resistor. The current source supplies five different currents used by the six available ohmmeter ranges. Resistance of an unknown is measured by connecting it across the Ω terminals and selecting Ω function.

4-9-. Range/Function Switches

4-10. Range and Function switching is accomplished by manual selection. Data from the Range and Function switches is supplied to the Display Module, and to the BCD Module when it is connected.

4-11. AC Converter.

4-12. The AC Converter accepts ac voltage from the attenuator and changes it to a dc voltage proportional to the level of the applied signal.

4-13. DETAILED THEORY OF OPERATION.

4-14 ACV/DCV Attenuator.

4-15. Figure 4-2 shows the ACV/DCV Attenuator with its AC and DC voltage accuracy adjustments deleted. Resistors R3, R5, and R7, shown in Figure 7.3 are dc adjustments. Capacitors C 3 through Cl 1 , also shown in Figure 7-j provide ac compensation for the attenuator.

4-16. Ω Converter.

4-17. Current Source. A simplified diagram of the Ω meter current source is shown in Figure 4-3a. Zener diode CRI6 is the voltage reference for the current source.

Figure 4-2. ACV/DCV Attenuator.

Amplifier A is connected in a non-inverting configuration and R_{b} is adjusted such that $1 \mathrm{~V}(.1 \mathrm{~V}$ for the 10 MIO range) is developed across R_{a} and R_{b}. Amplifier B has its + input connected to a stable dc voltage of -6.2 V . The input is connected to the output of Amplifier A through the range reference resistors R52-R56. The I V across R_{a} and R_{b} causes the output of Amplifier B to become more positive. This allows the current through Qx to vary such that the - input of Amplifier B becomes approximately -6.2 V. The input current to Amplifier B is very small. Consequently the current that flows through the range reference resistors is the same as the current supplied by the source of Qx . The drain current of Qx is almost identical to its source current because the gate current is extremely small. The drain current flows through Rx and develops a dc voltage which is applied to
the Display Module input. The output current, I_{x}, is changed for different resistance ranges by changing the value of R_{a}. On the $10 \mathrm{M} \Omega$ range
Switch Sb is in the $10 \mathrm{M} \Omega$ position which reduces the voltage between points 4 and 5 to .1 V .

4-18. Ohms Protection Circuit. The actual circuit represented by Q_{x} in Figure 4-3a is shown in Figure 43b. The ohmmeter circuits are protected for voltages applied to the " $\Omega\left(f^{\prime}\right)$ " input up to 350 V peak. Large negative voltages are blocked by CR12. Large positive voltages are blocked by the high collector to base breakdown voltages of Q13 and Q14. CR13 conducts for positive voltages greater than approximately 2 V , causing CR14 to conduct.

Figure 4-3. Ohms Converter.
turning on Q12. This places - 12 V at the collector of Q12 which turns off transistors Ql 1, Q13, and Q14.

419. AC Measuring Circuits.

420. A simplified diagram of the circuits used to measure ac voltage is shown ir Figure 4-4.

The attenuation of the input signal by the Attenuator for the four ac voltage ranges is:

Range	Attenuation Factor
1 V	$\times 1$
10 V	$\times 0.1$
100 V	$\times 0.01$
1000 V	$\times 0.001$

The output voltage of the attenuator is buffered by the Impedance Converter. The voltage gain of the Impedance Converter is adjustable and is approximately one. Its input impedance is very high to minimize loading of the Attenuator and its output resistance is low to drive the Converter Amplifier. The AC Converter yields a dc output voltage that is proportional to the average value of the negative half-wave rectified input signal. The resulting voltage is filtered and measured by the Display Module.

4-21. Impedance Converter. A simplified diagram of the Impedance Converter is shown in Figure 4-5. The input transistor Q1 is a source follower. Transistors Q2 and Q3 constitute an amplifier that provides bias current to Q1 and a high input resistance (load resistance) for Q1. A positive going voltage at point 1 causes the voltage at point 2 to increase. This increased voltage at point 2 increases the

Figure 4-4. Ac/DC Converter.
current through Q2. The increased current causes the voltage at point 4 to increase. Since Q3 is an emitter follower, point 3 will also increase and follow very closely the voltage at point 2 . Since the output voltage is taken at the emitter of Q3, RI3 may be increased to make the gain of the amplifier greater than unity.

4-22. AC Converter. Refer to Figure 4-4 for the following discussion. Overall ac feedback is supplied from point 5 back to the inverting input. The voltage at point 5 is similar in shape to the voltage at point 2 , inverted and about one-half the amplitude. Current for the negative half of the waveform at point 5 flows through CR8, R31 and R33. Current for the positive half of this waveform flows through CR9, R32 and R33. The output voltage is taken at the cathode of CR9, filtered by the Low Pass Filter and measured by the Display Module. The DC Feedback Amplifier provides a low frequency feedback path around the Converter Amplifier to keep the Converter Amplifier biased properly.

Model 34702A

Figure 4-5. Impedance Converter.

WARNING

These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so.

SECTION V.

MAINTENANCE

5-1. INTRODUCTION.

5-2. This section contains information necessary for maintenance of the -hp- Model 34702A Multimeter. Included are Performance Tests and Adjustment Procedures for the 30 day, 90 day, 6 month, and I year intervals referred to in Table 1-1. To determine the optimum calibration interval for your instrument, refer to MIL Specification MILC-45662A. If, after completing the Performance Checks, you find that the instrument does not meet its required specifications, refer to the Adjustment Procedure Paragraph 5-16). Attempt to readjust the instrument to bring it into specification. If, after adjusting the instrument, it is still out of specification, refer to troubleshooting in Section VII.

5-3. RECOMMENDED TEST EQUIPMENT.

5-4. The test equipment that is recommended for maintaining the Model 34702A is listed in Table 5-1. If the recommended model is not available, use equipment that has specifications equal to or better than those listed.

5-5. PERFORMANCE TESTS.

5-6. The following tests verify that the Model 34702A is operating properly and meets the specifications listed in Table 1-1 of this manual. These tests should be completed before any attempt is made to adjust the instrument.

5-7. A Performance Test Record is provided at the end of this section for recording the results of the Performance Tests.
$5-8$. All of the following tests have been written to include the use of either a 34740A or 34750A Display Module.

5-9. DC Accuracy Test (DCV Function).

DESCRIPTION

This test verifies the ability of the Model 34702A to measure dc voltage accurately within the specification limits.
SPECIFICATION.
34740A
Accuracy ($+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$), $\leq 95 \% \mathrm{RH}$):
30 days $\quad \pm$ (0.03% of reading $+.01 \%$ of range)
90 days $\pm(0.04 \%$ of reading $+.01 \%$ of range)
$6 \mathrm{mo} . \pm(0.05 \%$ of reading $+.02 \%$ of range $)$
$1 \mathrm{yr} \quad \pm(0.06 \%$ of reading $+.02 \%$ of range $)$

Table 5-1. Recommended Test Equipment.

Instrument Type	Required Characteristics	Recommended Model
AC Calibrator	$\begin{aligned} & 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V} \\ & 1000 \mathrm{~V}, 45 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz} \\ & \text { Accuracy: } \pm 0.04 \% \\ & \text { of setting (} 45 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \text {) } \\ & \pm 0.15 \% \text { of setting } \\ & (100 \mathrm{kHz}) \end{aligned}$	-hp- Model 745A/746A
$\begin{aligned} & \hline 100 \Omega, 1 \mathrm{~K} \Omega \\ & 10 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega \\ & 1 \mathrm{M} \Omega, 10 \mathrm{M} \Omega \\ & \text { standard resistors } \\ & \hline \end{aligned}$	Accuracy: $\pm 0.01 \%$	General Radio Model GR 1433-Z Decade Resistor
DC Standard	$\begin{aligned} & 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, \\ & 1000 \mathrm{~V} \text { Ranges } \\ & \text { Accuracy: } \pm 0.008 \% \end{aligned}$	-hp- 740B
Electronic Counter	Capable of measuring the period of 50 Hz or 60 Hz to within $\pm .01 \%$	$\begin{aligned} & \text {-hp- Model 5300A/ } \\ & \text { 5302A } \end{aligned}$

34750A

```
Accuracy ( \(+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\) ), \(\leq 95 \% \mathrm{RH}\) ):
30 days \(\pm(0.025 \%\) of reading \(+.005 \%\) of range \()\)
90 days \(\pm(0.035 \%\) of reading \(+.005 \%\) of range)
\(6 \mathrm{mo} . \quad \pm(0.045 \%\) of reading \(+.007 \%\) of range \()\)
1 yr . \(\pm(0.06 \%\) of reading \(+.01 \%\) of range \()\)
```


RECOMMENDED TEST EQUIPMENT:

DC Standard, -hp- Model 740B

TEST PROCEDURE:

a. Select the DCV function of the Model 34702A and connect a dc standard (-hp- Model 740B or equivalent) to the 34702A INPUT V terminals.
b. Check dc accuracy for both polarities of input according to Table 5-2. Apply short to 34702A input to check 0 V reading on all ranges.

NOTE

With 1000 V applied only the positive polarity is checked due to the possibility of arcing within the Model 740B.

Table 5-2. DC Accuracy.

DC Standard	$34702 \mathrm{~A}$Range	34740A Display				DC Standard	34702A Range	347504 Display			
		30 Day	90 Day	6 Months	1 Year			30 Day	90 Day	6 Months	1 Year
0 V	1 iv	$\begin{aligned} & +.0001 \text { to } \\ & +.0001 \end{aligned}$.000110 +.0001	.000210 +.0002	$\begin{aligned} & -0002 \text { to } \\ & +.0002 \end{aligned}$	0 V	1 V	+.00004 10	$\begin{aligned} & +0000510 \\ & +.00005 \end{aligned}$.00007 10 +.00007	$\begin{array}{r} 000010 \text { to } \\ +\quad .00010 \end{array}$
$\pm 1 \mathrm{~V}$	1 V	$\pm .9996$ ± 1.0004	$\pm .9995$ to $=10005$	$\pm .9993{ }^{10} 1.0007$	± 9992 to ± 1.0008	$\pm 1 \mathrm{~V}$	1 V	$\pm .99971$ to	$\pm .99960 ~$ ± 10	$\left\lvert\, \begin{aligned} & =99948 \\ & \pm 100052 \end{aligned} \quad 10\right.$	$\begin{aligned} & \pm .99930 \text { to } \\ & \pm 1.00070 \end{aligned}$
$\pm 1.9 \mathrm{~V}$	1 V	± 1.8993 to ± 1.9007	$\begin{aligned} & =1.899110 \\ & \pm 1.9009 \end{aligned}$	$\begin{aligned} & =1.8989 \text { to } \\ & =1.9012 \end{aligned}$	$\begin{aligned} & \pm 1.8987 \mathrm{to} \\ & \pm 1.9013 \end{aligned}$	- 1.9 V	1 V	± 1.89948 to ± 1.90052	$\begin{aligned} & \pm 189929 \text { to } \\ & \pm 1.90072 \end{aligned}$	$\left\lvert\, \begin{array}{lll} \pm & 1.89908 \\ \pm & 1.90093 \end{array}\right.$	$\begin{aligned} & \pm 1.89876 \text { to } \\ & \pm 1.90124 \end{aligned}$
: 1.998 V	1 V	± 1.9973 to ± 1.9987	$\begin{aligned} & \pm 1.9971 \text { to } \\ & \pm 1.9989 \end{aligned}$	$\begin{aligned} & =1.9968 \text { to } \\ & =19962 \end{aligned}$	$\begin{aligned} & \pm 1.9965 \text { to } \\ & \pm 1.9995 \end{aligned}$	$\pm 1.998 \mathrm{~V}$	1 V	± 1.9974610 ± 1.99854	$\begin{aligned} & \pm 1.99725 \text { to } \\ & \pm 1.99875 \end{aligned}$	$\left\|\begin{array}{ll} : 199703 \\ : 199897 \end{array} \quad 10\right\|$	$\begin{aligned} & =1.99660 \text { to } \\ & =199940 \end{aligned}$
0 V	10 V	-0.00110 +0.001	+0.00110 +0001	$\begin{array}{r} 0.00210 \\ +0002 \end{array}$	$\begin{array}{r} 0.00210 \\ +0.002 \end{array}$	0 V	10 V	$-0.2004 ~ t o ~$ +0.6004	- 00005 to +0.0005	+ 00000710	$\begin{aligned} & -0.001010 \\ & +0.0010 \end{aligned}$
$\pm 10 \mathrm{~V}$	10 V	± 9.99610 $=10.004$	$\begin{aligned} & \pm 9.995 \quad 10 \\ & \pm 10.005 \end{aligned}$	$\begin{aligned} & \pm 9.993 \quad 10 \\ & \pm 10.007 \end{aligned}$	$\begin{aligned} & \pm 9.992 \quad 10 \\ & \pm 10.008 \end{aligned}$.10 V	10 V	± 9.9971 to ± 100079	$\begin{aligned} & =99960 \text { to } \\ & \pm 10.0040 \end{aligned}$	$\left[\left.\begin{array}{ll} \pm 99948 & 10 \\ \pm 100052 & \end{array} \right\rvert\,\right.$	$\begin{aligned} & \pm 9.993910 \\ & \pm 10.0070 \end{aligned}$
: 19 V	10 V	± 18.99310 +19.007	$\begin{aligned} & \pm 18.991 \text { to } \\ & \pm 19.009 \end{aligned}$	$\begin{aligned} & \pm 18989 t 0 \\ & \pm 19.012 \end{aligned}$	$\begin{aligned} & \pm 1898710 \\ & \pm 19.013 \end{aligned}$: 19 V	10 V	± 18.9948 to ± 19.0052	$\begin{aligned} & \pm 18.9929 \text { to } \\ & \pm 19.0072 \end{aligned}$	$\left\|\begin{array}{ll} \pm 18.9903 & 10 \\ +19.0093 & \end{array}\right\|$	$\begin{aligned} & \pm 189876 \text { to } \\ & \pm 190124 \end{aligned}$
OV	100 V	00.0110 +00.01	$+00.01 ~ t o$ +00.01	$\begin{array}{r} 00.02 \text { to } \\ +\infty 0.02 \end{array}$	$\begin{array}{r} .00 .0210 \\ +00.02 \end{array}$	0 V	100 V	+00.004 +00.004	$\begin{aligned} & +00.005 \text { to } \\ & +00.005 \end{aligned}$	$\left\|\begin{array}{rr} -00.007 & 10 \\ +00.007 & \end{array}\right\|$	$\begin{array}{r} 00.010 \\ +00.010 \end{array}$
$\pm 100 \mathrm{~V}$	100 V	$\begin{aligned} & \pm 99.96 \text { to } \\ & \pm 100.04 \end{aligned}$	$\begin{aligned} & \pm 99.95 \quad 10 \\ & \pm 100.05 \end{aligned}$	$\begin{aligned} & \pm 99.9310 \\ & \pm 10007 \end{aligned}$	$\begin{aligned} & =99.9210 \\ & \pm 100.08 \end{aligned}$	$\pm 100 \mathrm{~V}$	100 V	$\begin{aligned} & \div 99.971 \text { to } \\ & +100029 \end{aligned}$	$\begin{aligned} & \pm 99960 \quad 10 \\ & \pm 100.040 \end{aligned}$	$\left\lvert\, \begin{array}{lll} \pm 99.948 & 10 \\ \pm & 100.052 \end{array}\right.$	$\begin{aligned} & \pm 99.930 t o \\ & =100.070 \end{aligned}$
. 190 V	100 V	$\begin{aligned} & \pm 189.93 \text { to } \\ & \pm 190.07 \end{aligned}$	$\begin{aligned} & \pm 189.91 \text { to } \\ & \pm 190.09 \end{aligned}$	$\begin{aligned} & \pm 189.8910 \\ & \pm 190.12 \end{aligned}$	$\begin{aligned} & \pm 189.87 \text { to } \\ & \pm 190.13 \end{aligned}$	$\pm 190 \mathrm{~V}$	100 V	$\begin{aligned} & \pm 189.948 \text { to } \\ & +190.052 \end{aligned}$	$\begin{aligned} & \pm 189.929 \text { to } \\ & \pm 190.072 \end{aligned}$	$\left\lvert\, \begin{aligned} & \pm 189.908 \\ & =190.093 \end{aligned}\right. \text { to }$	$\begin{aligned} & \pm 189.876 \text { to } \\ & \pm 190.124 \end{aligned}$
0 V	1000 V	$\begin{array}{r} +000.110 \\ +000.1 \end{array}$	$\begin{array}{r} 0001110 \\ +000.1 \end{array}$	$\begin{aligned} & .000 .210 \\ & +000.2 \end{aligned}$	$\begin{aligned} & +000.210 \\ & +000.2 \end{aligned}$	0 V	1000 V	$\begin{array}{r} .00004 \\ +000.04 \end{array}$	$\begin{aligned} & -800.05 \text { to } \\ & +000.05 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 000.07 & 10 \\ +000.07 & \end{array}\right.$	$\begin{array}{r} -000.10 \\ +000.10 \end{array}$
$+1000 \mathrm{~V}$	1000 V	$\begin{aligned} & +999.610 \\ & +1000.4 \end{aligned}$	$\begin{aligned} & +999.510 \\ & +1000.5 \end{aligned}$	$\begin{aligned} & +999.3 \text { to } \\ & +10007^{1} \end{aligned}$	$\begin{aligned} & +999.210 \\ & +1000.8 \end{aligned}$	$+1000 \mathrm{~V}$	1000 V	$\begin{aligned} & +999.71 \text { to } \\ & +1000.29 \end{aligned}$	$\begin{aligned} & +99960 \text { to } \\ & +1000.40 \end{aligned}$	$\left\|\begin{array}{ll} +999.48 \\ +1000.52 \end{array} \quad 10\right\|$	$\begin{aligned} & \pm 999.30 \\ & \pm 1000.70 \end{aligned}$

5-10. Input Impedance Test (DCV and ACV Function).

DESCRIPTION:

Input impedance affects the ability of a voltmeter to accurately measure a given voltage because of loading effects caused by the impedance Normally, it is desirable to achieve as high an input impedance as possible. This check ensures that the input Impedance of the Model 34702A meets the specifications listed below.

SPECIFIC ATION:

Input Resistance

$$
\begin{array}{ll}
1 \text { and } 10 \mathrm{~V} \text { ranges: } & 11.11 \mathrm{M} \Omega \pm 0.2 \% \leq 80 \mathrm{pF} \\
100 \mathrm{~V} \text { range: } & 10.1 \mathrm{M} \Omega \pm 0.2 \% \leq 80 \mathrm{pF} \\
1000 \mathrm{~V} \text { range: } & 10 \mathrm{M} \Omega \pm 0.2 \%<80 \mathrm{pF}
\end{array}
$$

RECOMMENDED TEST EQUIPMENT:

AC Calibrator, -hp- Model 745A
DC Standard, -hp- Model 740B
Resistance Decade, GR Model 1433-Z

TEST PROCEDURE:

a. Connect the equipment as shown ill Figure 5-1. The Model 34702A should be set to DCV on the 1 V range.
b. Set the resistance decade to $10 \mathrm{M} \Omega$ and then shunt it with a jumper lead. Set the DC standard for + 1.0000 V (34740A Display) or +1.00000 V (34750A Display) as observed on the Display Module.
c. Remove the jumper lead and again observe the display. It should read between .5258 V and .5268 V
(34740A) or between . 52582 and .52681 (34750A).
NOTE
The 34702A is not checked on the 10 V range since the input circuit is equivalent for both the 1 V and the 10 V ranges.
d. Set the Model 34702A to the 100 V range and short the resistance box with a jumper lead.
e. Set the dc standard for $+100.00 \mathrm{~V}(34740 \mathrm{~A})$ or +100.000 V (34750A) as observed on the Display Module.

WARNING

Use extreme caution when removing or replacing the jumper in Steps f, g and i to avoid electrical shock when performing the input impedance test on the 100 V ' and 1000 V ranges.

Rev. B 5-2

Figure 5-1. Input Impedence Test.
f. Turn the dc standard OUTPUT to OFF. Remove the jumper from the resistance box. Set dc standard OUTPUT to ON and again observe the display. It should read 50.20 to 50.30 (34740A) or 50.201 to 50.301 (34750A).
g. Turn the dc standard OUTPUT to OFF. Set the Model 34702A to the 1000 V range and short the resistance box with a jumper lead.
h. Turn the dc standard OUTPUT to ON. Set the dc standard for +1000.0 V (34740A) or +1000.00 \checkmark (34750 A) as observed on the Display Module.
i. Turn the dc standard OUTPUT to OFF. Remove the jumper from the resistance box. Turn the dc standard OUTPUT to ON and again observe the display. It should read 499.7 to 500.7 (34740A) or 499.75 to 500.75 (34750A).
j. Set the dc standard OUTPUT to zero. Replace dc standard with the ac standard.
k. Set the Model 34702A to the 1 V range. Replace the resistance box with a $100 \mathrm{k} \Omega$ resistor (-hpPart Number 0757-0465). Connect one end of the resistor directly to the HI terminal. Set the ac standard frequency to 1 kHz . Adjust the ac standard amplitude for +1.0000 V i 1 count(34740A) or $+1.00000 \mathrm{~V}+1$ count (34750A) as observed on the Display Module.
I. Change the ac standard frequency to 20 kHz . The 34702A display should indicate $>.7059$ (34740A) or> .70594 (34750A). This verifies the 34702A input capacity specification.

5-1. DC Effective Common Mode Rejection.

DESCRIPTION:
Effective Common Mode Rejection (ECMR) is a measure of the effect of a common mode source on the measured value or readout of the instrument with a 1kohm unbalance. Typically ECMR is measured in decibels (dB) and can be calculated by the following formula:

$$
\left(\frac{\text { Common Mode Voltage Applied }}{\text { Change in Display Indication }}\right)
$$

SPECIFICATION

Effective Common Mode Rejection (l $\mathrm{k} \Omega$ unbalance): > 80 dB .

RECOMMENDED TEST EQUIPMENT:

DC Standard, -hp- Model 740B
Resistor, I $\kappa \Omega$ t 1% (resistance decade may be used for this)

Figure 5-2. Effective Common Mode Rejection
Rev. C 5-3

TEST PROCEDURE

a. Disconnect all previous connections to the Model 34702A input and connect the equipment as shown in Figure 5-2. Set the dc standard for a +10 V output. Set the 34702A to the I V range.
b. Observe the voltmeter display. It should read less than 10 counts (34740A Display) or 100 counts (34750A Display). This verifies an effective common mode rejection at dc of $>80 \mathrm{~dB}$.

5-12. Normal Mode Rejection.

DESCRIPTION:

Normal Mode Rejection (NMR) is a measure of the ability of the Model 34702A to reject ac signals applied to the INPUT V terminals while the instrument is operating in DCV function. NMR is measured in decibels (dB) and can be calculated by the following formula:

Peak Normal Mode Voltage
NMR $(\mathrm{dB})=20 \log _{10}\left(\begin{array}{l}\text { Peak Display Indication }\end{array}\right)$

SPECIFICATION:

Normal Mode Rejection: Greater than 60 dB (at 50 Hz $\mathrm{t} 0.1 \%$ or $60 \mathrm{~Hz} \pm 0.1 \%$).

RECOMMENDED TEST EQUIPMENT:

AC Calibrator, -hp- Model 745A
Electronic Counter, -hp- Model 5300A/5302A

TEST PROCEDURE:

a. Disconnect all previous connections to the 34702A input and connect the equipment as shown in Fiqure 5-3. Set the Model 34702A to DCV and the 1 V range.
b. Adjust the ac calibrator output for .707 V rms (1 V peak).
c. Set the counter controls to measure period and adjust the ac calibrator frequency for a counter indication between 16.650 ms and 16.683 ms (19.980 ms to 20.020 ms for Option 050). The Display Module should read <10 counts (34740A Display) or <100 counts (34750A Display).

5-13. AC Accuracy.

DESCRIPTION:

This test verifies the ability of the Model 34702A to measure ac voltage accurately to within the specification tolerances.

SPECIFICATION:

34740A
Accuracy $\left(+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<95 \% \mathrm{RH}\right){ }^{\prime}$
30 days

45 Hz to 20 kHz	$\pm(0.25 \%$ of reading +
20 kHz to 100 kHz	$\pm .05 \%$ of range $)$
	$\pm(0.75 \%$ of reading +
	$.05 \%$ of range $)$

45 Hz to 20 kHz	$\pm\left(0.30^{\circ} \mathrm{C}\right.$ of reading +
20 kHz to 100 kHz	$.05 \%$ of range $)$
$\pm(0.80 \%$ of reading +	
$.05 \%$ of range $)$	

45 Hz to 20 kHz	$\pm(0.35 \%$ of reading +
20 kHz to 100 kHz	$.05 \%$ of range $)$
$\pm(0.85 \%$ of reading	
$.05 \%$ of range $)$	

1 yr .
45 Hz to $20 \mathrm{kHz} \quad \underset{0.050 \text { of reading }+}{ } \quad$
20 kHz to $100 \mathrm{kHz} \quad \pm(1.0 \%$ of reading + 0.05% of range)

Figure 5-3. Normal Mode Rejection.
Rev. A 5-4

34750A
Accuracy $\left(+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \leq 95 \% \mathrm{RH}\right)$:

```
30 days
    45 Hz to 20 kHz }\pm(0.25% of reading +
                                .05% of range)
    20 kHz to 100 kHz }\pm(.75% of reading +
                .05% of range)
90 days
    45 Hz to 20 kHz }\pm(.3% of reading +
                                .05% of range)
    20 kHz to 100 kHz \pm(.8% of reading +
                                .05% of range)
6 mo.
45 Hz to \(20 \mathrm{kHz} \quad \pm(.35 \%\) of reading + \(.05 \%\) of range)
20 kHz to \(100 \mathrm{kHz} \quad \pm(.85 \%\) of reading + .05\% of range)
1 yr.
45 Hz to \(20 \mathrm{kHz} \quad \pm(0.50 \%\) of reading + 0.05\% of range)
20 kHz to \(100 \mathrm{kHz} \quad \pm(1.0 \%\) of reading + 0.05\% of range)
```

RECOMMENDED TEST EQUIPMENT:

AC Calibrator/High Voltage Amplifier, -hp- Model $745 \mathrm{~A} / 746 \mathrm{~A}$ or equivalent.

TEST PROCEDURE:

a. Set the Model 34702A function switch to ACV and select the I V range. Apply short to 34702A input and check 0 V reading on all ranges.
b. Using an ac calibrator and a high voltage amplifier (-hp- Model 745A/746A recommended), check the accuracy of the Model 34702A for inputs other than 0 V at 45 Hz and 20 kHz using Table 5-3(a). Also check the accuracy for these inputs at 100 kHz using Table 53(b). All readings should be within the limits specified by the tables.

514. Response Time.

DESCRIPTION:
This test verifies the ability of the Model 34702A to respond quickly to changes in input voltage.

SPECIFICATION:

34740A
Response time: < 2 s to within $\pm 0.3 \%$ of final value or 20 counts, whichever is greater.

Table 5-3. (a). AC Accuracy (45 Hz and 20 kHz).

AC Standard	34702A Range	34740A Display				AC Standard	$34702 A$Range	34750A Display			
		30 Day	90 Day	6 Months	1 Year			30 Day	90 Day	6 Months	1 Year
0 V	1 V	. 0005	. 0005	. 0005	. 0005	0 V	1 V	. 00040	. 00050	. 00050	. 00050
1 V	1 V	9970 1.0030	1.9965 to	${ }_{1} 9960$ to	$\begin{aligned} & .9945 \text { to } \\ & 1.0055 \end{aligned}$	1 V	1 V	.99710 1.00290	$\begin{aligned} & .99650 \text { to } \\ & 1.00350 \end{aligned}$	$\begin{aligned} & .99600 \text { to } \\ & 1.00400 \end{aligned}$	$\begin{aligned} & .99550 \text { to } \\ & 1.00550 \end{aligned}$
1.9 V	1 V	1.8948 to 1.9053	1.8938 to	1.8929 to	$\begin{aligned} & 1.8900 \text { to } \\ & 1.9100 \end{aligned}$	1.9 V	1 V	$\begin{aligned} & 1.89485 \text { to } \\ & 1.90515 \end{aligned}$	$\begin{aligned} & 1.89380 \\ & 1.90620 \end{aligned}$	$\begin{aligned} & 1.89285 \text { to } \\ & 1.90715 \end{aligned}$	$\begin{aligned} & 189000 \text { to } \\ & 1.91000 \end{aligned}$
1.990 V	1 V	$\begin{aligned} & 1.9845 \text { to } \\ & 1.9955 \end{aligned}$	$\begin{aligned} & 1.9835 \text { to } \\ & 1.9965 \end{aligned}$	$\begin{aligned} & 1.9825 \text { to } \\ & 1.9975 \end{aligned}$		1.990 V	1 V	$\begin{aligned} & 1.98463 \text { to } \\ & 1.99538 \end{aligned}$	$\begin{aligned} & 1.98353 \text { to } \\ & 1.99647 \end{aligned}$	$\begin{aligned} & 1.98254 \text { to } \\ & 1.99747 \end{aligned}$	
0 V	10 V	0.005	0.005	0.005	0.005	0 V	10 V	0.0040	0.0050	0.0050	0.0050
10 V	10 V	$\begin{aligned} & 9.970 \text { to } \\ & 10.030 \end{aligned}$	$\begin{aligned} & 9.965 \text { to } \\ & 10.035 \end{aligned}$	$\begin{aligned} & 9.960 \text { to } \\ & 10.040 \end{aligned}$	$\begin{aligned} & 9.945 \text { to } \\ & 10.055 \end{aligned}$	10 V	10 V	$\begin{aligned} & 9.9710 \text { to } \\ & 10.0290 \end{aligned}$	$\begin{aligned} & 9.9650 \text { to } \\ & 10.0350 \end{aligned}$	$\begin{aligned} & 9.9600 \text { to } \\ & 10.0400 \end{aligned}$	$\begin{aligned} & 9.9550 \text { to } \\ & 10.0550 \end{aligned}$
19 V	10 V	$\begin{aligned} & 18.948 \text { to } \\ & 19.053 \end{aligned}$	$\begin{aligned} & 18.938 \text { to } \\ & 19.062 \end{aligned}$	$\begin{aligned} & 18.929 \text { to } \\ & 19.072 \end{aligned}$	$\begin{aligned} & 18.900 \text { to } \\ & 19.100 \end{aligned}$	19 V	10 V	$\begin{aligned} & 18.9485 \text { to } \\ & 19.0515 \end{aligned}$	$\begin{aligned} & 18.9380 \text { to } \\ & 19.0620 \end{aligned}$	$\begin{aligned} & 18.9285 \text { to } \\ & 19.0715 \end{aligned}$	$\begin{aligned} & 18.9000 \text { to } \\ & 19.1000 \end{aligned}$
0 V	100 V	00.05	00.05	00.05	00.05	0 V	100 V	00.040	00.050	00.050	00.050
100 V	100 V	$\begin{aligned} & 99.70 \text { to } \\ & 100.30 \end{aligned}$	$\begin{aligned} & 99.65 \text { to } \\ & 100.35 \end{aligned}$	$\begin{aligned} & 99.60 \text { to } \\ & 100.40 \end{aligned}$	$\begin{aligned} & 99.45 \\ & 100.55 \end{aligned}$	100 V	100 V	$\begin{aligned} & 99.710 \text { to } \\ & 100.290 \end{aligned}$	$\begin{aligned} & 99.650 \text { to } \\ & 100.350 \end{aligned}$	$\begin{aligned} & 99.600 \text { to } \\ & 100.400 \end{aligned}$	$\begin{aligned} & 99.550 \text { to } \\ & 100.550 \end{aligned}$
190 V	100 V	$\begin{aligned} & 189.48 \text { to } \\ & 190.53 \end{aligned}$	$\begin{aligned} & 189.38 \text { to } \\ & 190.62 \end{aligned}$	$\begin{aligned} & 189.29 \text { to } \\ & 190.72 \end{aligned}$	$\begin{aligned} & 189.00 \text { to } \\ & 191.00 \end{aligned}$	190 V	100 V	$\begin{aligned} & 189.485 \text { to } \\ & 190.515 \end{aligned}$	$\begin{aligned} & 189.380 \text { to } \\ & 190.620 \end{aligned}$	$\begin{aligned} & 189.285 \text { to } \\ & 190.715 \end{aligned}$	$\begin{aligned} & 189.000 \text { to } \\ & 191.000 \end{aligned}$
0 V	1000 V	000.5	000.5	000.5	000.5	0 V	1000 V	000.40	000.50	000.50	000.50
1000 V	1000 V	$\begin{aligned} & 997.0 \text { to } \\ & 1003.0 \end{aligned}$	996.5 to 1003.5	$\begin{aligned} & 996.0 \text { to } \\ & 1004.0 \end{aligned}$	$\begin{aligned} & 994.5 \text { to } \\ & 1005.5 \end{aligned}$	1000 V	1000 V	$\begin{aligned} & 997.10 \text { to } \\ & 1002.90 \end{aligned}$	$\begin{aligned} & 996.50 \text { to } \\ & 1003.50 \end{aligned}$	$\begin{aligned} & 996.00 \text { to } \\ & 1004.00 \end{aligned}$	995.50 to 1005.50

Rev. B 5-5

Table 5-3\}b). AC Accuracy (100 kHz).

AC Standard	$34702 A$Range	34740A Display				AC Standard	34702A Range	34750A Dtıplay			
		30 Dey	90 Doy	6 Months	1 Yeor			30 Day	90 Day	6 Months	1 Year
0 V	1 V	. 0005	. 0005	. 0005	. 0005	0 V	1 V	. 00050	. 00050	. 00050	. 00050
1 V	1 V	$\begin{aligned} & .9920 \text { to } \\ & 1.0080 \end{aligned}$	${ }_{1.0085}{ }^{\text {to }}$	$.9910^{10}$	$\begin{aligned} & .9895 \\ & 1.0105 \end{aligned}$	1 V	1 V	$\begin{aligned} & .99200 \text { to } \\ & 1.00800 \end{aligned}$	$\begin{aligned} & .99150 \text { to } \\ & 1.00850 \end{aligned}$	${ }^{.99100} \text { to }$	$\begin{aligned} & .98950 \quad 10 \\ & 1.01050 \end{aligned}$
1.9 V	1 V	$\begin{aligned} & 1.8853 \text { to } \\ & 1.9148 \end{aligned}$	$\begin{array}{\|l} 1.8839 \text { to } \\ 1.9162 \end{array}$	$\begin{aligned} & 1.8829 \text { to } \\ & 1.9171 \end{aligned}$	$\begin{aligned} & 1.8801 \text { to } \\ & 1.9200 \end{aligned}$	1.9 V	1 V	$\begin{aligned} & 1.88525 \text { to } \\ & 1.91475 \end{aligned}$	$\begin{aligned} & 1.88430 \mathrm{ta} \\ & 1.91570 \end{aligned}$	$\begin{array}{\|l} 1.88335 \\ 1.91665 \end{array}$	$\begin{aligned} & 1.88050 \text { to } \\ & 1.91950 \end{aligned}$
0 V	10 V	0.005	0.005	0.005	0.005	0 V	10 V	0.0050	0.0050	0.0050	0.0050
10 V	10 V	$\begin{aligned} & 9.920 \text { to } \\ & 10.060 \end{aligned}$	$\begin{aligned} & 9.915 \text { to } \\ & 10.085 \end{aligned}$	$\begin{aligned} & 9.910^{t o} \\ & 10.090 \end{aligned}$	$\begin{aligned} & 9.895 \\ & 10.105 \end{aligned}$	10 V	10 V	$\begin{aligned} & 9.9200 \text { to } \\ & 10.0800 \end{aligned}$	$\begin{aligned} & 9.9150 \text { to } \\ & 10.0850 \end{aligned}$	$\begin{aligned} & 9.9100 \text { to } \\ & 10.0900 \end{aligned}$	$\begin{aligned} & 9.8950 \text { to } \\ & 10.1050 \end{aligned}$
19 V	10 V	$\begin{aligned} & 18.853 \text { to } \\ & 19.148 \end{aligned}$	$\begin{aligned} & 18.839 \text { to } \\ & 19.016 \end{aligned}$	$\begin{aligned} & 18.829 \text { to } \\ & 19.171 \end{aligned}$	$\begin{aligned} & 18.801 \text { to } \\ & 19.200 \end{aligned}$	19 V	10 V	$\begin{aligned} & 18.8525 \text { to } \\ & 19.1475 \end{aligned}$	$\begin{aligned} & 18.8430 \text { to } \\ & 19.1570 \end{aligned}$	$\begin{aligned} & 18.8335 \text { to } \\ & 19.1665 \end{aligned}$	$\begin{aligned} & 18.8050 \text { to } \\ & 19.1950 \end{aligned}$
0 V	100 V	00.05	00.05	00.05	00.05	OV	100 V	00.050	00.050	00.050	00.050
100 V	100 V	$\begin{aligned} & 99.20 \text { to } \\ & 100.80 \end{aligned}$	$\begin{aligned} & 99.15 \quad 10 \\ & 100.85 \end{aligned}$	$\begin{aligned} & 99.10 \\ & 100.90 \end{aligned}$	$\begin{aligned} & 98.95 \text { to } \\ & 101.05 \end{aligned}$	100 V	100 V	$\begin{aligned} & 99.200 \text { to } \\ & 100.800 \end{aligned}$	$\begin{aligned} & 99.150 \text { to } \\ & 100.850 \end{aligned}$	$\begin{aligned} & 99.100 \\ & 100.900 \end{aligned}$	$\begin{aligned} & 98.950 \text { to } \\ & 101.050 \end{aligned}$
190 V	100 V	$\begin{aligned} & 188.53 \text { to } \\ & 191.48 \end{aligned}$	$\begin{aligned} & 188.39 \text { to } \\ & 190.16 \end{aligned}$	$\begin{aligned} & 188.29 \text { to } \\ & 191.71 \end{aligned}$	$\begin{aligned} & 188.01 \text { to } \\ & 192.00 \end{aligned}$	190 V	100 V	$\begin{aligned} & 188.525 \text { to } \\ & 191.475 \end{aligned}$	$\begin{aligned} & 188.430 \text { to } \\ & 191.570 \end{aligned}$	$\begin{aligned} & 188.335 \text { to } \\ & 191.665 \end{aligned}$	$\begin{aligned} & 188.050 \text { to } \\ & 191.950 \end{aligned}$
0 V	1000 V	000.5	000.5	000.5	000.5	0 V	1000 V	000.50	000.50	000.50	000.50
1000 V	1000 V	$\begin{aligned} & 992.0 \text { to } \\ & 1008.0 \end{aligned}$	$\begin{aligned} & 991.5 \text { to } \\ & 1008.5 \end{aligned}$	$\begin{aligned} & 991.0 \\ & 1009.0 \end{aligned}$	989.5 to 1010.5	1000 V	1000 V	$\begin{aligned} & 992.00 \text { to } \\ & 1008.00 \end{aligned}$	$\begin{aligned} & 991.50 \text { to } \\ & 1008.50 \end{aligned}$	$\begin{aligned} & 991.00 \text { to } \\ & 1009.00 \end{aligned}$	$\begin{aligned} & 989.50 \text { to } \\ & 1010.50 \end{aligned}$

34750A

Response time: <2 s to within $t 0.3 \%$ of final value or 200 counts, whichever is greater.
RECOMMENDED TEST EQUIPMENT:
AC Calibrator, -hp- Model 745A or equivalent

TEST PROCEDURE:

a. Set the ac calibrator output to 10 V at I kHz . Set the 34702 A to ACV on the 10 V range.
b. Connect the output of the ac calibrator to the 34702A INPUT V terminals while observing the 34740A/34750A Display Module. The display indication should read within 30 counts (34740A) or 300 counts (34750A) of its final value within two seconds after the 34702A is connected to the ac calibrator.

5-15. Ohms Accuracy.

DESCRIPTION:

This test verifies the ability of the Model 34702A to accurately measure resistance to within the limits of the specification given below.
SPECIFICATION:
34740A
Accuracy ($\left.\pm 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \leq 95 \% \mathrm{RH}\right)$:

30 days

$10 \mathrm{M} \Omega$ range	$\pm(0.25 \%$ of reading +
	0.02% of range $)$
All other	$\pm(0.05 \%$ of reading +
ranges	0.02% of range $)$

90 days

$10 \mathrm{M} \Omega$ range	$\pm(0.30 \%$ of reading +
	0.02% of range $)$
All other	$\pm(0.06 \%$ of reading +
ranges	0.02% of range $)$

6 mo .
$10 \mathrm{M} \Omega$ range $\quad \pm(0.35 \%$ of reading +
All other $\quad \pm(0.07 \%$ of reading + ranges $\quad 0.03 \%$ of range)

1 yr .
$10 \mathrm{M} \Omega$ range $\quad \pm(0.50 \%$ of reading +
All other $\quad \pm(0.11 \%$ of reading +

34750A
Accuracy ($+23^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}, \leq 95 \% \mathrm{RH}$):
30 days
$10 \mathrm{M} \Omega$ range $\pm(0.25 \%$ of reading +
All other $\quad 0.015 \%$ of range)
All other $\quad \pm(0.045 \%$ of reading + ranges $\quad 0.015 \%$ of range)
$\pm 0.03 \%$ of range)

90 days	
$10 \mathrm{M} \Omega$ range	$\pm(0.3 \%$ of reading +
	0.015% of range $)$
All other	$\pm(0.055 \%$ of reading +
ranges	0.015% of range $)$

6 mo .

$10 \mathrm{M} \Omega$ range	$\pm(0.35 \%$ of reading +
	0.02% of range $)$
All other	$\pm(0.065 \%$ of reading +
ranges	0.02% of range $)$

1 yr .

$10 \mathrm{M} \Omega$ range	$\pm(0.50 \%$ of reading +
	0.02% of range $)$
All other	$\pm(0.11 \%$ of reading +
ranges	0.02% of range $)$

RECOMMENDED TEST EQUIPMENT:

Resistance Decade, GR Model 1433-Z or equivalent.

NOTE

Due to temperature change inside the instrument between line and battery operation, the voltage references in the Display Module must be adjusted when changing modes to achieve these specifications.

TEST PROCEDURE:

a. Connect a resistance decade with 100 f through $\mathrm{M} \Omega$ steps to the INPUT i2 terminals of the Model 34702A.
b. Refer to Table 5-4 and check the accuracy of the 34702A on the 100Ω through $10 \mathrm{M} \Omega$ ranges.

Table 5-4. Ohms Accuracy Test.

Resistance Standard	34702A Range	34740A Display				DC Standerd	34702A Range	34750A Display			
		30 Dav	90 Day	6 Months	1 Year			30 Day	90 Day	6 Months	1 Year
0Ω	100Ω	00.02	00.02	00.03	00.03	0Ω	100Ω	00.015	00.015	00.020	00.020
100Ω	100Ω	$\begin{aligned} & 99.93 \text { to } \\ & 100.07 \end{aligned}$	$\begin{aligned} & 99.92 \\ & 100.08 \end{aligned} \text { to }$	$\begin{aligned} & 99.90 \text { to } \\ & 100.10 \end{aligned}$	$\begin{aligned} & 99.86 \text { to } \\ & 100.14 \end{aligned}$	100Ω	100Ω	$\begin{aligned} & 99.940 \text { to } \\ & 100.060 \end{aligned}$	$\begin{aligned} & 99.930 \text { to } \\ & 100.070 \end{aligned}$	$\begin{aligned} & 99.915 \\ & 100.085 \end{aligned}$	$\begin{aligned} & 99.870 t 0 \\ & 100.130 \end{aligned}$
190Ω	100Ω	$\begin{aligned} & 189.89 \text { to } \\ & 190.12 \end{aligned}$	$\begin{aligned} & 189.87 \text { to } \\ & 190.13 \end{aligned}$	$\begin{aligned} & 189.84 \text { to } \\ & 190.16 \end{aligned}$	$\begin{aligned} & 189.7610 \\ & 190.24 \end{aligned}$	190Ω	100Ω	$\begin{aligned} & 189.900 \text { to } \\ & 190.101 \end{aligned}$	$\begin{aligned} & 189.881 \text { to } \\ & 190.120 \end{aligned}$	$\begin{aligned} & 189.877 \text { to } \\ & 190.124 \end{aligned}$	$\begin{aligned} & 189.771 \text { to } \\ & 190.229 \end{aligned}$
0Ω	$1 \mathrm{k} \Omega$. 0002	. 0002	. 0003	. 0003	0Ω	$1 \mathrm{k} \Omega$. 00015	. 00015	. 00020	. 00020
1000Ω	$1 \mathrm{k} \Omega$	$\frac{.9993}{1.0007}$	$\begin{aligned} & .9992 \text { to } \\ & 1.0008 \end{aligned}$	$\begin{aligned} & .9990 \text { to } \\ & 1.0010 \end{aligned}$	$\begin{aligned} & .9986 \text { to } \\ & 1.0014{ }^{2} \end{aligned}$	1000Ω	$1 \mathrm{k} \Omega$	$1.99940 \text { to }$	$.99930 \text { to }$		$\underbrace{1.00130}_{1.99870}$
1900Ω	$1 \mathrm{k} \boldsymbol{\Omega}$	$\begin{aligned} & 1.8989 \text { to } \\ & 1.9012 \end{aligned}$	$\begin{aligned} & 1.8987 \text { to } \\ & 1.9013 \end{aligned}$	$\begin{aligned} & 1.8984 \text { to } \\ & 1.9016 \end{aligned}$	$\begin{aligned} & 1.8976 \text { to } \\ & 1.9024 \end{aligned}$	1900Ω	$1 \mathrm{k} \Omega$	$\begin{aligned} & 1.89900 \text { to } \\ & 1.90101 \end{aligned}$	$\begin{aligned} & 1.89881 \text { to } \\ & 1.90120 \end{aligned}$	$\begin{aligned} & 1.89877 \text { to } \\ & 1.90124 \end{aligned}$	$\begin{aligned} & 1.89771 \text { to } \\ & 1.90229 \end{aligned}$
1990Ω	$1 \mathrm{k} \Omega$	$\begin{aligned} & 1.9888 \text { to } \\ & 1.9912 \end{aligned}$	$\begin{aligned} & 1.9886 \text { to } \\ & 1.9914 \end{aligned}$	$\begin{aligned} & 1.9883 \text { to } \\ & 1.9917 \end{aligned}$	$\begin{aligned} & 1.9875 \text { to } \\ & 1.9925 \end{aligned}$	1990Ω	$1 \mathrm{k} \Omega$	$\begin{aligned} & 1.98895 \text { ro } \\ & 1.99105 \end{aligned}$	$\begin{aligned} & 1.98891 \text { to } \\ & 1.99109 \end{aligned}$	$\begin{aligned} & 1.98871 \text { to } \\ & 1.99129 \end{aligned}$	$\begin{aligned} & 1.98761 \text { to } \\ & 1.99239 \end{aligned}$
0Ω	$10 \mathrm{k} \Omega$	0.002	0.002	0.003	0.003	0Ω	$10 \mathrm{k} \Omega$	0.0015	0.0015	0.0020	0.0020
$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$\begin{aligned} & 9.993 \text { to } \\ & 10.007 \end{aligned}$	$\begin{aligned} & 9.992 \text { to } \\ & 10.008 \end{aligned}$	$\begin{aligned} & 9.990 \text { to } \\ & 10.010 \end{aligned}$	$\begin{aligned} & 9.986 \text { to } \\ & 10.014 \end{aligned}$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$\begin{array}{ll} 9.9940 & t 0 \\ 10.0060 \end{array}$	$\begin{aligned} & 9.9930 \\ & 10.0070 \end{aligned}$	$\begin{aligned} & 9.9915 \text { to } \\ & 10.0085 \end{aligned}$	$\begin{aligned} & 9.9870 \text { to } \\ & 10.0130 \end{aligned}$
$19 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$\begin{aligned} & 18.989 \text { to } \\ & 19.012 \end{aligned}$	$\begin{aligned} & 18.987 \text { to } \\ & 19.013 \end{aligned}$	$\begin{aligned} & 18.984 \text { to } \\ & 19.016 \end{aligned}$	$\begin{aligned} & 18.976 \text { to } \\ & 19.024 \end{aligned}$	$19 \mathrm{k} \Omega$	10 kr	$\begin{aligned} & 18.9900 \text { to } \\ & 19.0101 \end{aligned}$	$\begin{aligned} & 18.9881 \text { to } \\ & 19.0120 \end{aligned}$	$\begin{aligned} & 18.9877 \text { to } \\ & 19.0124 \end{aligned}$	$\left\{\begin{array}{l} 18.9771 \text { to } \\ 19.0229 \end{array}\right.$
0Ω	$100 \mathrm{k} \Omega$	00.02	00.02	00.03	00.03	0Ω	$100 \mathrm{k} \Omega$	00.015	00.015	00.020	00.020
$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$\begin{aligned} & 99.93 \text { to } \\ & 100.07 \end{aligned}$	$\begin{aligned} & 99.92 \text { to } \\ & 100.08 \end{aligned}$	$\begin{aligned} & 99.90 \text { to } \\ & 100.10 \end{aligned}$	$\begin{aligned} & 99.86 \text { to } \\ & 100.14 \end{aligned}$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$\left\lvert\, \begin{aligned} & 99.940 \\ & 190.060 \end{aligned}\right.$	$\begin{aligned} & 99.930 \text { to } \\ & 100.070 \end{aligned}$	$\begin{aligned} & 99.915 \text { to } \\ & 100.085 \end{aligned}$	$\begin{aligned} & 99.870 \text { to } \\ & 100.130 \end{aligned}$
$190 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$\begin{aligned} & 189.89 \text { to } \\ & 190.12 \end{aligned}$	$\begin{aligned} & 189.87 \text { то } \\ & 190.13 \end{aligned}$	$\begin{aligned} & 189.84 \text { to } \\ & 190.16 \end{aligned}$	$\begin{aligned} & 189.76 \text { to } \\ & 190.24 \end{aligned}$	$150 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$\left\lvert\, \begin{aligned} & 189.900 \text { to } \\ & 190.101 \end{aligned}\right.$	$\begin{aligned} & 189881 \text { to } \\ & 190.120 \end{aligned}$	$\begin{aligned} & 189.877 \text { to } \\ & 190.124 \end{aligned}$	$\left\lvert\, \begin{aligned} & 189.771 \text { to } \\ & 190.229 \end{aligned}\right.$
0Ω	$1000 \mathrm{k} \Omega$	000.2	000.2	000.3	000.3	0Ω	$1000 \mathrm{k} \Omega$	000.15	000.15	000.20	000.20
1 Mn	$1000 \mathrm{k} \Omega$	$\begin{aligned} & 999.3 \text { to } \\ & 1000.7 \end{aligned}$	$\begin{aligned} & 999.2 \text { to } \\ & 1000 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 999.0 \text { to } \\ & 1001.0 \end{aligned}$	$\begin{aligned} & 998.86 \\ & 1001.4 \end{aligned}$	1 Mn	$1000 \mathrm{k} \Omega$	$\left\lvert\, \begin{aligned} & 999.40 \\ & 1900.60 \end{aligned}\right.$	$\begin{aligned} & 999.30 \text { to } \\ & 1000.70 \end{aligned}$	$\begin{aligned} & 999.15 \\ & 1000.85 \end{aligned}$	$\left(\begin{array}{ll} 998.70 & t 0 \\ 1001.30 \end{array}\right.$
$1.9 \mathrm{M} \Omega$	$1000 \mathrm{k} \Omega$	$\begin{aligned} & 1898.9 \text { to } \\ & 1991.2 \end{aligned}$	$\begin{aligned} & 1898.7 \text { to } \\ & 1901.3 \end{aligned}$	$\begin{aligned} & 1898.4 \text { to } \\ & 1901.6 \end{aligned}$	$\begin{aligned} & 1897.6 \text { to } \\ & 1902.4 \end{aligned}$	$1.9 \mathrm{M} \Omega$	$1000 \mathrm{k} \Omega$	$\left\lvert\, \begin{aligned} & 1899.00 \text { to } \\ & 1901.01 \end{aligned}\right.$	$\begin{aligned} & 189881 \text { to } \\ & 1901.20 \end{aligned}$	$\begin{aligned} & 1898.77 \text { to } \\ & 1901.24 \end{aligned}$	1897.71 to 1902.29
0Ω	$10 \mathrm{M} \Omega$	0.002	0.002	0.003	0.003	0Ω	$10 \mathrm{M} \Omega$	0.0015	0.0015	0.0020	0.0020
$10 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	$\begin{aligned} & 9.973 \text { to } \\ & 10.027 \end{aligned}$	$\begin{aligned} & 9.968 \text { to } \\ & 10.032 \end{aligned}$	$\begin{aligned} & 9.961 \text { to } \\ & 10.038 \end{aligned}$	$\begin{aligned} & 9.947 \text { to } \\ & 10.053 \end{aligned}$	10 Mr	$10 \mathrm{M} \Omega$	$\left\lvert\, \begin{array}{ll} .99745 & \text { to } \\ 1.00265 \end{array}\right.$	$\begin{aligned} & .99685 \\ & 1.00315 \end{aligned}$	$1_{1.00370} \text { to }$	$\left\|\begin{array}{ll} .99400 & \text { to } \\ 1.00520 \end{array}\right\|$

5-16. ADJUSTMENT PROCEDURE.

5-17.The following is a complete adjustment procedure for the Model 34702A.

NOTE

Before proceeding, it should be ascertained that the display module is operating properly and is calibrated.

5-18. Cover Removal.

5-19. Disconnect the power cord. Separate the 34702A from the display module by pulling the two side locks at the back of the instrument rearward and lifting the mainframe from the 34702A. Separate the 34702A main assembly from its cover by spreading apart two sets of plastic fingers, as shown in Figure 5-4 and removing the cover. After removing the cover reconnect the 34702A to the mainframe and attach the power cord.

Figure 5-4. Removal From Case
NOTE
It will be necessary to turn the instrument upside down to obtain access to the 34702A adjustments. Figure 5-5 shows the location of all adjustments in the Model 34702A.

5-20. DC Adjustments.

DESCRIPTION:

These adjustments affect dc accuracy of the Model 34702A.

RECOMMENDED TEST EQUIPMENT:
DC Standard, -hp- Model 740B or equivalent
CALIBRATION PROCEDURE:

WARNING

1000 V is used in the following procedure. Contact with this voltage can cause death or serious injury.
a. Select the 10 V range of the 34702A and connect a dc standard to the INPUT V terminals.
b. Set the output of the dc standard to 10 V and adjust 41R3 for a 10.000 V readout (34740A), or a 10.0000 V readout (34750A).
c. Select the 100 V range of the 34702A and set the dc standard to 100 V output. Adjust R5 to obtain a 100.00 V readout (34740A) or a 100.000 V readout (34750A).
d. Select the 1000 V range of the 34702A and set the dc standard to 1000 V output. Adjust R7 to give a 1000.OV readout (34740A), or a 1000.00 V readout 34750A).

5-21. 34702A AC Adjustments

DESCRIPTION:
These adjustments affect ac accuracy of the Model 34702A.

RECOMMENDED TEST EQUIPMENT:

AC Calibrator, -hp- Model 745A
High Voltage Amplifier, -hp- Model 746A
CALIBRATION PROCEDURE:

WARNING

1000 V ac is used in the following procedure Contact with this voltage can cause death or serious injury.
a. Select the ACV function of the Model 34702A and set it to the IV range.
b. Apply I V at 10 kHz from the ac calibrator to the 34702A INPUT V terminals and adjust AIR13 for a 1.0000 V readout (34740A), or a 1.00000 readout (34750A).
c. Select the 1000 V range of the Model 34702A and apply 1000 V from the ac calibrator/high voltage amplifier to the 34702A.
d. Adjust AIC5 (coarse adj.) for a IO00.OV readout (34740A), or a 1000.00 V readout (34750A).
e. Select the IOV range of the Model 34702A and set the ac calibrator to the 10 V range.
f. Adjust AIC6 for a 10.000 V readout (34740A), or a 10.0000 V readout (34750A).
g. Select the 100 V range of the Model 34702A and set the ac calibrator for 100 V output.
h. Adjust A1C9 for a 100.00 V readout (34740A), or a 100.000 V readout (34750A).
i. Select the 1000 V range of the Model 34702A and apply 1000 V from the ac calibrator/high voltage amplifier.
j. Adjust AICII (fine adj.) for a 1000.0 V readout (34740A), or a 1000.00 V readout (34750A).

WARNING

To avoid possible electrical shock, turn off the high voltage amplifier before disconnecting it from the Model 34702A.

5-22. 34702A Ohms Adjustments

DESCRIPTION:

These adjustments affect the Ω Accuracy of the Model 34702A.

RECOMMENDED TEST EQUIPMENT:

Decade Resistor, General Radio Model 1433-Z or equivalent.

CALIBRATION PROCEDURE:

a. Connect the resistance decade to the 34702A INPUT Ω terminals using two short lengths of copper wire. Set the resistance decade to $10 \mathrm{k} \Omega$.
b. Select the Ω function of the Model 34702A and set it to the $10 \mathrm{k} \Omega$ range. Adjust AIR64 to give a 10.000 kt readout (34740A), or a 10.00000kf readout (34750A).
c. Set the resistance decade to 10 Mt . Select the 10 $\mathrm{M} \Omega$ range of the 34702A and turn AIR59 to give a $10.000 \mathrm{M} \Omega$ readout (34740A) or a $10.0000 \mathrm{M} \Omega$ readout (34750A).

Figure 5-5. Adjustment Locator.

PERFORMANCE TEST CARD

Hewlett-Packard Model 34740A/34702A
Multimeter
Serial Number

Tests Performed By
Date \qquad

TM 11-6625-2809-14 \& P

Rev. A 5-11

TM 11-6625-2809-14 \& P

5-12

TM 11-6625-2809-14 \& P

TM 11-6625-2809-14 \& P

TM 11-6625-2809-14 \& P

Paragraph Number	Test	Results		
		Minimum	Actual	Maximum
5-15 (Cont'd)	(1 Year)			
	100Ω	99.86		00.03 100.14
	Range	189.76		190.24
		. 9986		.0003 1.0014
	$1 \mathrm{k} \Omega$	1.8976		1.9024
	Range	1.9875		1.9925
				0.003
	$10 \mathrm{k} \Omega$	9.986		10.014
	Range	18.976		19.024
				00.03
		99.86		100.14
	Range	189.76		190.24
				000.3
		998.86		1001.4
	Range	1897.6		1902.4
				0.003
	$10 \mathrm{M} \Omega$ Range	9.947		10.053

5-15

PERFORMANCE TEST CARD

Hewlett-Packard Model 34750A/34702A
Multimeter
Tests Performed by \qquad

Serial No. \qquad Date \qquad

TM 11-6625-2809-14 \& P

Rev. A 5-17

Rev. A. 5-18

TM 11-6625-2809-14 \& P

TM 11-6625-2809-14 \& P

	Test	Results		
Paragraph Number		Minimum	Actual	Maximum
5-15 (Cont'd)	$10 \mathrm{k} \Omega$ Range	$\begin{gathered} 9.9940 \\ 18.9900 \end{gathered}$		0.0015 10.0060 19.0101
				00.015
	$100 \mathrm{k} \Omega$	99.940		100.060
	Range	189.900		190.101
				000.15
	$1000 \mathrm{k} \Omega$	999.40		1000.60
	Range	1899.00		1901.01
	$10 \mathrm{M} \Omega$			0.0015
	Range	. 99940		1.00060
	(90 Day)			00.015
		99.930		100.070
	$\begin{aligned} & 100 \Omega \\ & \text { Range } \end{aligned}$	189.881		190.120
				. 00015
		. 99930		1.00070
		1.89881		1.90120
	$1 \mathrm{k} \Omega$ Range	1.98891		1.99109
				0.0015
		9.9930		10.0070
	$10 \mathrm{k} \Omega$ Range	18.9881		19.0120
				00.015
		99.930		100.070
	$100 \mathrm{k} \Omega$	189.881		190.124
	Range			000.15
		999.30		1000.70
	$1000 \mathrm{k} \Omega$	1898.81		1901.20
	Range			0.0015
	$10 \mathrm{M} \Omega$. 99685	-	1.00315
	Range			
	(6 Months)			00.020
		99.915		100.085
	100Ω	189.877		190.124
	Range			. 00020
		. 99915		1.00085
		1.89877		1.90124
	$1 \mathrm{k} \Omega$	1.98871		1.99129
	Range			0.0020
		9.9915		10.0085
	$10 \mathrm{k} \Omega$	18.9877		19.0124
	Range			00.020
		$\begin{gathered} 99.915 \\ 189.877 \end{gathered}$		100.085 190.124
	$100 \mathrm{k} \Omega$			
	Range			000.20
		998.70 1897.71		1001.30
	$1000 \mathrm{k} \Omega$			
	Range			

TM 11-6625-2809-14 \& P

SECTION VI.

IDENTIFICATION OF PARTS

6-1. INTRODUCTION.

6-2. This section contains information to identify parts. Table 6-1 lists parts in alphanumeric order of their reference designators and indicates the description, -hpPart Number of each part, together with any applicable notes, and provides the following:
a. Total quantity used in the instrument (Qty column). The total quantity of a part is given the first time the part number appears.
b. Description of the part. (See list of abbreviations below.)
c. Typical manufacturer of the part in a fivedigit code.
d. Manufacturers part number.

6-3. Miscellaneous parts are listed at the end of Table 6-1.

6-4 DELETED

6-5 DELETED

6-6. DELETED

6-7. DELETED

6-8. PARTS CHANGES

6-9. Components which have been changed are so marked by one of three symbols; i.e. Δ, Δ with a letter subscript, e.g. Δ_{a}, or Δ with a number subscript e.g. Δ_{10}. A Δ with no subscript indicates the component listed is the preferred replacement for an earlier component. A Δ with a letter subscript indicates a change which is explained in a note at the bottom of the page. A Δ with a number subscript indicates the related change is discussed in backdating (Appx A). The number of the subscript indicates the number of the change in backdating which should be referred to.

6-10. PROPRIETARY PARTS.

$6-11$. Items marked by a dagger (\dagger) in the reference designator column are available only for repair and service of Hewlett-Packard instruments.

Table 6－1．Identification of Parts

\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designation \& HP Part Number \& Qty \& Description \& Mfr Code \& Mfr Part Number

\hline 41 \& 347．J2－66．501＋8 \& \& \& \&

\hline alci \& 0160－3965 \& 1 \& E：FxJ 0．001 UF 20 y \& 28490 \& 165－3965

\hline ${ }^{\text {Alc }}$ A ${ }^{\text {a }}$ \& 0170－3022 \& 1 \& C：FXD MY O．1UF 208 60JVnca \& $$
09134
$$ \& TYPE 24

\hline Alc
Alca

dic \& $0160-3030$

$0180-4425$ \& 1 \& こ：FXJ 10 PF 2530 VDCh C：FXD MICA 47 PF 5 \％ \& \[
$$
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0167-3933 \\
& 0160-4425
\end{aligned}
$$
\]

\hline Alc 5 \& 0121－016号 \& 1 \& E：VAz TEFLUN（．25－1．5）PF goovocn \& 28490 \& 0121－0168

\hline alco \& $0121-3127$ \& 2 \& E：Var atr toimmer 1．7 to 14．1 PF \& 286eo \& 0121－0127

\hline ${ }^{\text {alf }} 7$. \& $9160-3972$ \& 1 \& E：FxD 1012 PF \& 28480 \& 0163－3972

\hline ${ }_{\text {Alfa }}{ }^{\text {AlC }}$ \& $0140-5145$

$0121-0478$ \& 1 \& | C：FXD Mica 22 PF 5 ₹ |
| :--- |
| E：VAR AIK 2．4－34．0 PF B50VBr．w | \& 28680

74970 \& $3140-0145$
$193-0010-005$

\hline alcts \& 0160－3973 \& 1 \& ［：FXJ 10353 PF \& 28480 \&

\hline Alcil \& 0121－0147 \& 1 \& ：iVAP AIR $2.0 / 19.3$ PF \& 28480
28480 \& 9160－3973

\hline $41: 12$ \& 0170－0043 \& 2 \& C：FXD MY ．022 UF 10 S 600 VDCA \& 28480 \& 0170－0043

\hline 41613 \& Cl AO－0210 \& 1 \& E：FX）ELFCT 3.3 UF 20215 VDCW \& 56289 \& 15003359031542－3Y5

\hline A1C．14
Alcis \& ${ }_{0}^{0190-1830}$ \& 3 \& C：FXD ELFCT 13 J UF $1120-102$ OVDC． \& 56289 \& 300633 （NP）

\hline A1C16 \& 0180.0197 \& 1 \& C：FXDEERCO．OOS UF 500 YOCW \& 96095
56289 \& ${ }^{01-4} 150225 \times 9020 A 2.0 Y 5$

\hline ${ }^{11217}$ \& 0150.2199 \& 1 \& C：FXD Mica 30 口F 5 ${ }^{\text {S }}$ \& 72136 \& OBD

\hline Alcity \& 0140－0196 \& 2 \& C：FX）MICA 150 PF 18 \& 72136 \& DM15FI540300WVICR

\hline Alcaj \& －0140－0196 \& \& C：FXD ELECK 150 CFF ＋100－102 6 VOCA
C：FX \& 56289
72136 \& $303603(N P)$
DM15F 151 IJO300WVICR

\hline 41521 \& 0180－1800 \& \& C：FXD ELECT 1JJ UF＋100－10x bVICd \& 56289 \& 300603 （NP）

\hline alc．27 \& $0160-2132$
$0170-3038$ \& \& E：FXD MY O． 55 UF 10850 VDCH \& 56289 \& 410 P SPEC

\hline Alc23
Alc．
alc \& $0170-3038$
$0170-0040$ \& 1 \& \& 56289
5628 \& 14月P22492 PUN

\hline A1C．25 \& 0180－5291 \& 1 \& C：FXD FLEET L．J UF $13 \pm 35 \mathrm{VDCa}$ \& 56289

56298 \& $$
\begin{aligned}
& 292 P 47392-\text { PTS } \\
& 1503105 \times 903542 \text {-DYS }
\end{aligned}
$$

\hline AlC26 \& 01 RO－0228 \& 2 \& E：FXO ELECT 22 UF $10915 V D C W$ \& 56299 \& 1505226x901532－JY5

\hline A1C27，${ }^{\text {A1C28 }}$ \& $0180-1701$
$0180-0228$ \& 2 \& C：FXD ELECT 6.8 UF 20X E VOCW
C：FXD ELECT $22 \mathrm{UF} 10 \times 15 \mathrm{VDCW}$ \& 28480

56289 \& | 0180－170 |
| :--- |
| 1500225X901582－DYs |

\hline A1c30 \& 8150－3992 \& 1 \& C：FXD $300 \mathrm{PF} 10 \times 300 \mathrm{VOCW}$ \& 85275 \& 1590226x901582－DYs

\hline Alcal \& 0170－0043 \& \& C：FXD MY ． 222 UF 10x 600 VDCW \& 84411 \& HEW－93

\hline Alcaz \& 1901－3376 \& 2 \& UIJDE：SILIICDN 35 V \& 28480
28480 \& ${ }_{1901-0376}$

\hline AICR3 \& 1902－3049 \& 2 \& SIIDE ：OREAKDOWN G．19V 5x \& 04713 \& S210939－122

\hline AICRE \& 1702－31日2 \& 1 \& गJJE BREAKDCAN：SILIECN Lz．IV 5 \％ \& ［8480 \& S210930－122

\hline Alck 7 \& 1901－9040 \& \& SIJJE：SILICON 50MA 30NV \& 07263 \& FDGIOAB

\hline AICra \& 1701－3518 \& 2 \& \& 28480 \& 1901－0518

\hline alcra
alcrin \& $1901-3518$
$1701-0548$ \& 2 \& \& 28480
17858
1788 \& $1901-051$（ ${ }^{\text {FN } 1705}$

\hline AICRII \& 1901－0646 \& \& Jiuge：si 30 WV 1．0 ra leakage \& 17858 \& FN1705

\hline ${ }^{\text {A L CR12 }}$ \& 1901－9029 \& 1 \& DIJaE：SILICON 505 PIV \& 284R0 \& 1901－0029

\hline Alckl
Alchi \& $1771-0586$
$1002-3040$ \& 1 \& TIJJE：SI 30 WV 10 PA LEAKAGE \& 28480 \& 1901－3586

\hline AICHis \& 1902－j041 \& 3 \& JIJJE：RRFAKDOWN Siliv 5 S \& 28483 \& 1902－0040

\hline AにR16 \& 1702－3717 \& 1 \& DIJde：Rreakoinn b． 2 V 5 5 \& 04713 \& 14825

\hline alcalt \& 1002－0041 \& \& JJJE：RRFAKDOWN 5．11Y 5\％ \& 04713 \& 5210939－98

\hline A1CxL8
Alculiz \& 1702－3041 \& \& DIDOE：AREAKDCAN 5 －1IV 58 \& 04713
07263 \& S210939－9
FDG1J88

\hline Aにく20 \& 1901－3040 \& \& DIJJE：SILICJN 50MA 35 NV \& 07263 \& FDSIOB8

\hline \& ${ }_{1901.0040}$ \& \& SIJJE：SILICON SOMA 30dV \& 07263 \& FIGIJAg

\hline Alcriz
Alchis \& 1901.0040
$1802-3149$ \& \& DIODE：SILICON 50MA 30 WV \& 07263 \& FDG1088

\hline ${ }^{\text {alj }}$ \& 1855－0412 \& 2 \& TSTR：FET SI N－EHANNEL \& 6473
17856 \& SZ 119939.170

\hline 4137 \& 1253－2010 \& 3 \& ISTR：S1PYP（SELECTED FROM 2N3251） \& 28480 \& 1953－0010

\hline a13 \& 1953－0010 \& \& TSTR：SI PNP（SELECTED FFDM 2N3251） \& 28480 \& 1853－0010

\hline 410＊ \& 1954－0071 \& 8 \& TSTR：SI NPYISELECTED FROM 2N3TO4） \& 28480 \& 1856－0071

\hline 41.15 \& 1854－0404 \& \& TSTR：SI APYISELECTED EROM 2NBTO4 \& 28480 \&

\hline A136
A12 \& 1854－0215 \& \& TSTR：SI NPNISELECTED FROM 2N3704）
TSTR：SJ NPN（SELECTED FRDM 2×3704（ \& 04713
28480 \& SPS 3611

\hline $\triangle 104$ \& 1854－0215 \& \& \& 26488
04713 \& SPS 3611

\hline 410 \& 1853－0010 \& \& TStR：SI PNPISELECTED FRDM 2N3251\％ \& 28480 \& 1853－0010

\hline 41013 \& $1854-0071$ \& \& TSTR：SI NPNISELECPED FROY 2N37041 \& 284880 \& 1月54－0071

\hline ${ }^{41011}$ A101？ \& 1455－0412 \& \& YSTR：FLT SI N－CHAYNEL
TSTR：SI NPNSELECTED FREM 2N3T041 \& 17858
28480 \& FN2980
1854－0071

\hline A101s \& 1＊54－0829 \& 2 \& TSTQ：SI NPN \& 12040 \& NS48030

\hline A1316 \& 1454－0629 \& \& TSTR：SI NPN \& 12040 \& NS49030

\hline Alult \& 1954－0071 \& \& TSta：St mpviselectev frim 2n3706s \& 28480 \& 1854－0071

\hline A121 \& 0893－8233 \& 4 \& RESISTMR：MATCHEJ SET \& 28480 \& 0698－8233

\hline 215？ \& 0599－8233 \& \& \& 28480 \& 0698－8233

\hline AIms \& 2100－3250 \& 1 \& R：VAD 5K JHM \& 28480 \& 2100－3250

\hline 4184
4185 \& $0694-\mathrm{R} 233$
$2100-3268$ \& 1 \& RESISTJ2：WATEMEU SET
2：VAR CSMP SOD OHM \& 28480
28480 \& 0698－8233
$2100-3248$

\hline 1146 \& OC 79－0233 \& \& RFSTSTHK：पATCHED SET \& 29480 \& 0698－2233

\hline 4127 \& 2100－3259 \& 1 \& a：VAR CIMMP 50 OHM \& 28480 \& 2100－3259

\hline AlRe \& 0211－3329 \& 1 \& R：FXD W－1כJK nHm 5\％10w \& 28460 \& OA11－3029

\hline
\end{tabular}

ta This Fart No．does not include A1015
tohp－Pirt No．1901－058＊can aho be und for
CR 10 and CR11．However both diodes hould heve the nerwe pert member

Rev．A 6－3

Table 6-1. Identification of Parts

Δ une for all replacement

Table 6-1. Identification of Parts

[^1]used hp- Part No. 03700450

Rev. A 6-5

PART NUMBER - NATIONAL STOCK NUMBER CROSS REFERENCE INDEX

PART NUMBER	FSCM	NATIONAL STOCK NUMBER	PART NUMBER	FSCM	NATIONAL STOCK NUMBER
CB-36G5	01121	5905-00-458-4406	1810-0173	28480	5905-01-042-5043
CB2721	01121	5905-00-111-4727	1820-0203	28480	5962-00-483-1956
CB6821	01121	5905-00-721-0671	1820-0571	28480	5962-00-329-4583
DM74LO2N	12040	5962-00-257-9226	1820-0583	28480	5962-00-390-7958
DM74L74N	12040	5962-00-369-7607	1820-0586	28480	5962-00-390-7970
DM74L86N	12040	5962-00-172-5578	1820-0587	28480	5962-00-396-2262
RDM15F391-J3C	72136	5910-00-018-0918	1820-0635	28480	5962-00-329-4569
SL8940	07263	5962-00-483-1956	1820-0668	28480	5962-00-369-9839
SN74175N	01295	5962-00-163-0145	1853-0010	28480	5961-00-931-6998
SZ10939-122	04713	5961-00-752-6121	1853-0089	28480	5961-00-179-8478
SZ10939-98	04713	5961-00-821-2309	1854-0039	28480	5961-00-985-9073
0121-0127	28480	5910-00-828-2061	1854-0404	28480	5961-00-408-9807
0121-0168	28480	5910-00-244-8375	1901-0029	28480	5961-00-950-0537
0140-0145	28480	5910-00-257-0227	1902-0040	28480	5961-00-059-1215
0140-0196	28480	5910-00-774-7294	1902-0041	28480	5961-00-858-7372
0140-0204	28480	5910-00-069-0362	1902-0049	28480	5961-00-911-9277
0150-0014	28480	5910-00-834-5013	1902-3149	28480	5961-00-833-3043
0160-3930	28480	5910-00-378-0588	1902-3182	28480	5961-00-229-1966
0170-0022	28480	5910-00-826-1162	192P39292-PTS	56289	5910-00-921-0275
0170-0038	28480	5910-00-817-7275	193-0010-005	74970	5910-00-378-0646
0170-0040	28480	5910-00-829-0245	1990-0413	28480	5961-01-042-5332
0170-0043	28480	5910-00-993-8535	2N4117A	80131	5961-01-017-6023
0180-0197	28480	5910-00-850-5355	2100-3154	28480	5905-00-615-8111
0180-0291	28480	5910-00-931-7055	3101-1723	28480	5930-01-035-8847
0180-1800	28480	5910-00-126-1696	312.500	75915	5920-00-280-8344
0340-0782	28480	5970-01-025-0262	8131-100-651-104	72982	5910-00-451-5671
0370-2159	28480	5975-01-007-9111	9100-3223	28480	5950-01-042-1970
0683-1025	28480	5905-00-110-7620			
0683-1525	28480	5905-00-106-1356			
0684-1021	28480	5905-00-056-0531			
0684-1051	28480	5905-00-116-8554			
0684-1221	28480	5905-00-407-2151			
0684-2221	28480	5905-00-105-7764			
0684-2731	28480	5905-00-119-3504			
0684-3921	28480	5905-00-141-0743			
0687-1201	28480	5905-00-110-0196			
0698-3152	28480	5905-00-420-7130			
0698-3159	28480	5905-00-407-0053			
0698-3243	28480	5905-00-891-4227			
0698-3264	28480	5905-00-138-5051			
0698-3274	28480	5905-00-483-0226			
0698-3437	28480	5905-00-402-7080			
0698-3499	28480	5905-00-478-7468			
0698-3515	28480	5905-00-478-7469			
0698-3558	28480	5905-00-407-0061			
0698-3700	28480	5905-00-138-5052			
-698-4123	28480	5905-00-998-1915			
0698-4470	28480	5905-00-759-1539			
0698-6391	28480	5905-00-306-0740			
0757-0443	28480	5905-00-891-4252			
0757-0451	28480	5905-00-981-7478			
0757-0461	28480	5905-00-089-7577			
0757-0486	28480	5905-00-982-3777			
0813-0032	28480	5905-00-490-3946			
1N825	04713	5961-00-923-3940			
150D105X9035A2-D	56289	5910-00-456-4474			
1510-0091	28480	5940-01-035-6148			
1810-0151	28480	5905-01-023-2750			
1810-0171	28480	5905-01-042-7499			
1810-0172	28480	5905-01-043-0514			

SECTION VII.
 TROUBLESHOOTING AND CIRCUIT DIAGRAMS

7-1. INTRODUCTION.

7-2. This section of the Operating and Service Manual contains troubleshooting information and circuit diagrams for the Model 34702A Multimeter. Included are trouble shooting trees, a schematic diagram and a component locator.

7-3. SCHEMATIC DIAGRAM.

74. The circuits contained within the Model 34702A are shown on the schematic diagram (Figure 7-3), This diagram can be used to assist in understanding of the theory of operation as well as aid in troubleshooting the instrument. DC voltages and ac waveforms are given on the schematic.

7-5. COMPONENT LOCATION DIAGRAM.

7-6. The Component Location Diagram associated with the schematic shows the position of each part mounted on the pc assembly. Each part is identified by a reference designator.

7-7. TROUBLESHOOTING.

7-8. \quad Troubleshooting Trees.

7-9. \square Figures 7-1 and 7-2 are troubleshooting trees designed to assist in the isolation of malfunctions. Figure 7-1 is a troubleshooting tree for the ac converter, Figure 7-2 is a troubleshooting tree for the Ω converter.

7-10. Troubleshooting Procedure.

7-11. The following procedure is recommended for troubleshooting the Model 34702A:
a. Ensure the mainframe plug-on (Display Module) is functioning properly.
b. Perform the following preliminary tests:

1. Apply t 1.0000 V dc to the INPUT V terminals. Check for turnover error.
2. Apply full-scale voltages to the 10 V , 100 V, and 1000 V scales. Check for proper numerical display and decimal point location.

NOTE

The above checks verify proper functioning of many display module interconnections, range switches, and coaxial wiring.
c. Check the ac converter as follows:

1. Apply I V ac at 01 kHz to the INPUT V terminals.
2. Trace the propagation of this signal through the impedance converter, ac converter amplifier and filter circuitry.
3. If these circuits appear to be working, check the Input Attenuator.
(a) Apply full-scale voltages to the 34702A on the $10 \mathrm{~V}, 100 \mathrm{~V}$, and 1000 V ranges. Do this at 10 kHz and 100 kHz.
(b) Note any inaccuracies in the readout. Any error is probably due to the input attenuator.

NOTE

Most frequency response problems are in the input attenuator.
4. Typical Problem Areas.
(a) Noise-check ac converter amplifier.
(b) Low output or zero output-check the ac converter amplifier.
(c) Any type of inaccuracy-check dc feedback amplifier Ul by replacement. Also, check Q1 for leakage (by replacement).
d. Check the dc section of the instrument:

1. Check for shorted trimmer capacitors.
2. Using an Ω meter, measure the contact resistance of the switches. Each switch should indicate a short circuit. Dirty switches can be cleaned with MS-1 80 Freon Degreaser.
3. Coax cables may be shorted or open.
4. Resistors in the dc attenuator may change value.
e. Check the ohms current source:
5. Place the 34702A in Ω function and verify that an overload indication occurs (overrange "1" illuminates and rest of display blanks) with no resistance applied.
6. Check all ohms ranges at full-scale to determine which ranges are bad. When only the two highest ranges are inaccurate, check Q11 if the display indication is high. Check CR13 if the indication is low.
7. Referring to the schematic diagram, check the voltages on the two operational amplifiers. If the- 7.2 V and -6.2 V references are incorrect or absent, check U3 and CR16.
f. Attempt the Performance Tests (Section V) in order to characterize the trouble. Also try the Adjustment

Procedures. Some apparent malfunctions can be corrected by these adjustments. Also, inability to obtain correct adjustment will help localize the problem.
g. Check for burned or loose components, loose connections, or other conditions which might be the source of the trouble.
h. If the problem exists on the DCV and ACV functions but not on the Ω function, troubleshoot the DCV/ACV attenuator. If the trouble exists only on the Ω or ACV function, refer to the respective troubleshooting tree.

GENERAL SCHEMATIC NOTES

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. PREFIX WITH ASSEMBLY OR SUB. ASSEMBLY DESIGNATION(S) OR BOTH FOR COMPLETE DESIGNATION.
2. COMPONENT VALUES ARE SHOWN AS FOLLOWS UNLESS OTHERWISE NOTED.

RESISTANCE IN OHMS

 CAPACITANCE IN MICROFARADS INDUCTANCE IN MILLIHENRIES3. DENOTES EARTH GROUND.

USED FOR TERMINALS WITH NO LESS THAN A NO. 18 GAUGE WIRE CONNECTED BETWEEN TERMINAL AND EARTH GROUND TERMINAL OR AC POWER RECEPTACLE.
4.

DENOTES FRAME GROUND
USED FOR TERMINALS WHICH ARE PERMANENTLY CONNECTED WITHIN AP. PROXIMATELY 0.1 OHM OF EARTH GROUND.
5.

DENOTES GROUND ON PRINTED CIRCUIT ASSEMBLY. (PERMANENTLY CONNECTED TO FRAME GROUND.)
6. ANY LETTER OR NUMBER IN TRIANGLE DENOTES A SPECIAL GROUND.
7. $\sim \sim$ DENOTES ASSEMBLY
8. DENOTES MAIN SIGNAL PATH.
9. \rightarrow DENOTES FEEDBACK PATH
10. \square DENOTES FRONT PANEL MARKING.
 DENOTES REAR PANEL MARKING. DENOTES SCREWDRIVER ADJUST.
.
$*$
AVERAGE VALUE SHOWN. OPTIMUM VALUE SELECTED AT FACTORY. THE VALUE OF THESE COMPONENTS MAY VARY FROM ONE INSTRUMENT TO ANOTHER.
14. $\longrightarrow>$ DENOTES SECOND APPEARANCE
15. 92 DENOTES WIRE COLOR: COLOR CODE SAME AS RESISTOR COLOR CODE. FIRST NUMBER IDENTIFIES BASE COLOR, SECOND NUMBER IDENTIFIES STRIP.
16. ALL RELAYS ARE SHOWN DEENERGIZED.
17. WAVEFORMS AND AC VOLTAGE MEASUREMENTS WERE MADE WITH RESPECT TO CHASSIS GROUND USING AN OSCILLOSCOPE WITH A 10:1 DIVIDER PROBE ($10 \mathrm{MEGOHM}, 10 \mathrm{pF}$). THE VOLTAGE LEV. ELS SHOWN ON THE WAVEFORMS ARE ACTUAL VOLTAGE LEVELS AND ARE NOT TO BE CONFUSED WITH OSCILLOSCOPE SETTING. THE VOLT. AGE LEVELS SHOWN ARE NOMINAL AND MAY VARY FROM ONE INSTRUMENT TO ANOTHER. A VARIATION OF $\pm 10 \%$ IN MEASUREMENTS SHOULD BE ALLOWED.
18. DC VOLTAGE LEVELS WERE MEASURED WITH RESPECT TO CIRCUIT GROUND USING A VTVM WITH 10 MEGOHM INPUT IMPEDANCE. THE VOLTAGE LEVELS SHOWN ARE NOMINAL AND MAY VARY FROM ONE INSTRUMENT TO ANOTHER DUE TO CHANGE IN TRANSISTOR CHARACTERISTICS. A VARIATION OF $\pm 10 \%$ SHOULD BE ALLOWED.

APPENDIX A

 DATA DIFFERENCE SHEET
A-1. INTRODUCTION.

A-2. This section makes your manual applicable to earlier instruments. Where component values or part numbers in an instrument differ from the replaceable parts list, yet are not listed in this section, the part numbers and values listed in the parts list should be used for replacement.

A-3. Where practical, backdating entries have been incorporated into the text of the manual rather than into this section. If a backdating change is too long or otherwise impractical to incorporate in the text, the entry to be changed will be flagged with a delta having a number subscript; e.g. $\left(\Delta_{\mathrm{t}}\right)$. The subscript refers to the number of the corresponding change in backdating. Make all changes listed in this backdating which apply to your instrument.

CHANGE NO. Δ_{1} : Applies to serial numbers 1212A0335 and below
Table 6-1
Delete A1C31, A1R68, and A1C8 Change A1C12 to C:fxd, $.01 \mu \mathrm{~F} \pm 20 \%$ 2000 vdcw, -h p-Part No. 0160-0996

Figure 7-3 Page 7-5 \& 7-6:

Change the input circuit to AIQI as follows:

Change the component locator for the A1 Assembly as follows:

hp Part No. 34702-66501

APPENDIX B REFERENCES

DA Pam 310-4 Index of Technical Manuals, Technical Bulletins, Supply Manuals, (Type 7, 8, and 9), Supply Bulletins, and Lubrication Orders.

DA Pam 310-7 US Army Equipment Index of Modification Work Orders.
TM 38-750 The Army Maintenance Management System (TAMMS).
TM 740-90-1 Administrative Storage of Equipment.
TM 750-244-2 Procedures for Destruction of Electronics Materiel to Prevent Enemy Use (Electronics Command).

B-1

APPENDIX C
 MAINTENANCE ALLOCATION

Section I. INTRODUCTION

C-1. General

This appendix provides a summary of the maintenance operations for ME-498/U. It authorizes categories of maintenance for specific maintenance functions on repairable items and components and the tools and equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.

C-2. Maintenance Function

Maintenance functions will be limited to and defined as follows:
a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.
b. Test. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical characteristics of an item and comparing those characteristics with prescribed standards.
c. Service. Operations required periodically to keep an item in proper operating condition; i.e, to clean (decontaminate), to preserve, to drain, to paint, or to replenish fuel, lubricants, hydraulic fluids, or compressed air supplies.
d. Adjust. To maintain, within prescribed limits, by brining into proper or exact position, or by setting the operating characteristics to the specified parameters.
e. Align. To adjust specified variable elements of an item to bring about optimum or desired performance.
f. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments or test measuring and diagnostic equipments used in precision measurement. Consists of comparisons of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any discrepancy in the accuracy of the instrument being compared,
g. Install. The act of emplacing, seating, or fixing into position an item, part, module (component or assembly) in a manner to allow the proper functioning of the equipment or system.
h. Replace. The act of substituting a serviceable like type part, subassembly, or module (component or assembly) for an unserviceable counterpart.
i. Repair. The application of maintenance services (inspect, teste, service, adjust, align, calibrate, replace) or other maintenance actions (welding, grinding, riveting, straightening, facing, remachining, or resurfacing) to restore serviceability to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module (component or assembly), end item, or system.
j. Overhaul. That maintenance effort (service/action) necessary to restore an item to a completely serviceable/operational condition as prescribed by maintenance standards (i.e., DMWR) in appropriate technical publications. Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like new condition.
k. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a like new condition in accordance with original manufacturing standards. Rebuild is the highest degree of materiel maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc.) considered in classifying Army equipments/components.

C-3. Column Entries

a. Column 1, Group Number. Column 1 lists group numbers, the purpose of which is to identify components, assemblies, subassemblies, and modules with the next higher assembly.
b. Column 2, Component/Assembly. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized.
c. Column 3, Maintenance Functions. Column 3 lists the functions to be performed on the item listed in column 2. When items are listed without maintenance functions, it is solely for purpose of having the group
numbers in the MAC and RPSTL coincide.
d. Column 4, Maintenance Category. Column 4 specifies, by the listing of a "work time" figure in the appropriate subcolumn(s), the lowest level of maintenance authorized to perform the function listed in column 3. This figure represents the active time required to perform that maintenance function at the indicated category of maintenance. If the number or complexity of the tasks within the listed maintenance function vary at different maintenance categories, appropriate" work time" figures will be shown for each category. The number of task-hours specified by the "work time" figure represents the average time required to restore an item (assembly, subassembly, component, module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time, troubleshooting time, and quality assurance/quality control time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the maintenance allocation chart. Subcolumns of column 4 are as follows:

C - Operator/Crew
O-Organizational
F - Direct Support
H - General Support
D - Depot
e. Column 5, Tools and Equipment. Column 5 specifies by code, those common tool sets (not individual tools) and special tools, test, and support equipment required to perform the designated function.
f. Column 6, Remarks. Not applicable.

C-4. Tool and Test Equipment Requirements (Sec III)

a. Tool or Test Equipment Reference

Code. The numbers in this column coincide with the numbers used in the tools and equipment column of the MAC. The numbers indicate the applicable tool or test equipment for the maintenance functions.
b. Maintenance Category. The codes in this column indicate the maintenance category allocated the tool or test equipment.
c. Nomenclature. This column lists the noun name and nomenclature of the tools and test equipment required to perform the maintenance functions.
d. National/NATO Stock Number. This column lists the National/NATO stock number of the specific tool or test equipment.
e. Tool Number. This column lists the manufacturer's part number of the tool followed by the Federal Supply Code for manufacturers(5-digit) in parentheses.

C-5. Remarks(Sec IV)
 Not applicable.

SECTION II. MAINTENANCE ALLOCATION CHART
 FOR

MUTIMETER ME-498/U

SECTION III TOOL AND TEST EQUIPMENT REQUIREMENTS

FOR
MULTIMETER ME-498/U

APPENDIX D

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT, AND GENERAL SUPPORT MAINTENANCE REPAIR PARTS AND SPECIAL TOOLS LIST

NOTE
Refer to section VI, Identification of Parts, for all maintenance repair parts.

D-1

MODEL 34750A DISPLAY

The main body of this instruction manual applies to
Serial Number 1304A00101
and higher. Any changes made in instruments having serial numbers higher than the above number are, or will be, integrated into the manual by page revision as they occur. Revised pages are identified by a revision letter in the lower corner of the page. You may receive subsequent revised pages by returning the questionaire in the front of the manual with the appropriate square marked. If a change is made that does not apply to all previously manufactured instruments, backdating information in appeodix 4 adapts the manual to the earlier instruments.

Manual Part No. 34750-90001

Microfiche Part No. 34750-90051

SECTION I GENERAL INFORMATION

1-1. DESCRIPTION.

1-2. The Hewlett-Packard Model 34750A Display Module is part of the low cost 3470 Measurement System designed to measure AC volts, DC volts, current and resistance. It can be combined with the Model

34701 A, Model 34702A or Model 34703A Plug-On Module, shown in Figure 1-1, to make these measurements. Table 1-1 lists the various plug-on modules which condition the input to the Model 34750A, and indicates the functions of each.

Figure 1-1. Plug-On Modules which can be used with the 34750A Display Module.

Figure 1-2. Accessories Available for use with 34750A.

Table 1-1. 3470A Series Signal Conditioning Modules.

Plug-On (Signal Conditioning) Module	Function				
	DCV	Ω	ACV	DCA	Auto Ranging
34701A DC Voltmeter 34702A Multimeter 34703A DCV/DCA/ Meter	X				
X	X	X			

1-3. Two center (sandwich) modules are also available for use with the Model 34750A and a signal conditioning module. These modules (Model 34720A and Model 34721 A) add the capabilities of battery operation and BCD output to the 3470A measurement system. These modules are also shown ir Figure 1-1
$1-4$. The digital readout of the 34750A consists of five full digits plus an overrange "1". The LED (Light Emitting Diode) display provides a bright clear readout with a maximum display of 199999.

1-5. The Model 34750A has an internal jumper wire which may be positioned to test the logic and display circuits.

1-6. SPECIFICATIONS.

1-7. Specifications for the 34750A are included in Section I of the Operating and Service manuals for the "plug-on" modules.

1-8. OPTIONS.

1-9. Options available for the 34750A are listed in Table 1-2.

Table 1-2. Available Options.

	Purpose	Measurement Rate
Option	Operation with 60 Hz line.	$5 / \mathrm{sec}$
060	Operation with 50 Hz line.	$8 / \mathrm{sec}$

1-10. ACCESSORIES AVAILABLE (See Figure 1-2).

a. 11456A - Read Out Test Card - Facilitates testing and troubleshooting the Model 34750A Display Module.
b. 18019A - Carrying Case - Accommodates the 34750A Display Module, a center module, and a " plug-on" module plus the power cord and input cables.
c. 11457A - Rack Mount Kit-Permits rack mounting of a 34750A Display Module, a 34721 B Center Module, and a "plug-on" module.
d. 10576A - Rack Mount Kit- Permits rack mounting of a 34750A Display Module and a "plug-on" module.
e. 562A-16C - Printer Cable - Connects the output of the Model 34721B BCD Module to a Model 5055A Digital Recorder.

1-11. INSTRUMENT AND MANUAL IDENTIFICATION.

1-12. A three-section serial number is used to identify your Model 34750A. Figure 1-3 illustrates the meaning of the three parts of the number.

1-13. This manual is kept up-to-date with revised pages. If the serial number of your instrument is lower than the one on the title page of this manual refer to the backdating information in Appendix A which adapts this manual to your instrument. All correspondence with Hewlett-Packard Company should include the complete serial number.

Figure 1-3. Instrument Serial Number (on rear panel).

SECTION II. INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains information and instructions for the installation and shipping of the 34750A. Included are initial inspection procedures, power and grounding requirements, environmental information and repackaging for shipment.

2-3. INITIAL INSPECTION.

2-4. This instrument was carefully inspected both mechanically and electrically before shipment. It should be physically free of mars or scratches and in perfect electrical order upon receipt. To confirm this, the instrument should be inspected for physical damage incurred in transit. If the instrument was damaged in transit, file a claim with the carrier. Check to ensure you have received a power cord with the instrument. Using the performance test procedures referred to in Section V, test the electrical performance of the instrument. If there is damage or deficiency see the warranty on the reverse side of the title page of this manual.
$2-6$. The 34750 A can be operated from the following nominal primary power sources:

Line Voltage	Tolerances	Frequency Range
100 V	$+5 \%$ to -10%	48 to 440 Hz
120 V	$+5 \%$ to -10%	48 to 440 Hz
220 V	$+5 \%$ to -10%	48 to 440 Hz
240 V	$+5 \%$ to -10%	48 to 440 Hz

The 34750A is set for 120 volt operation at the factory. Refer to Figure 2-1 for the procedure to change your unit for operation on a different voltage.

IF THE INSTRUMENT IS NOT SET
FOR THE CORRECT
POWER VOLTAGE IT MARY
PERIOUSLY DAMAGED.

2-5. POWER REQUIREMENTS.

1. Open cover door and rotate fuse-pull to left.
2. Select operating voltage by orienting PC board to position desired voltage on top-left side. Push board firmly into module slot.
3. Rotate fuse-pull back into normal position.
4. Check to ensure you are using the proper size fuse. A 0.5 amp fuse is required for $100 / 120 \mathrm{VAC}$ line operation, a 0.25 amp fuse should be used for 220/240 VAC operation.
5. Re-insert the fuse in the fuseholder.

Figure 2-1. Voltage Selection.

The primary power voltage that is currently selected to operate your 34750A can be observed in the power module window. (See Figure 2-1).

2-7. GROUNDING REQUIREMENTS.

2-8. To protect operating personnel, the National Electrical Manufacturers' Association (NEMA) recommends that the instrument panel and cabinet be grounded. The Model 34750A is equipped with a threeconductor power cable that grounds the instrument when it is plugged into the appropriate receptacle. The offset pin on the power cable is the ground wire.

2-9. To preserve this protection feature when operating from a two-contact outlet, use a three-prong to two- prong adapter and connect the pigtail on the adapter to power line ground.

2-10. ENVIRONMENTAL REQUIREMENTS.

2-11. The 34750A should not be operated where the ambient temperature exceeds 00 C to 500 C (320 F to $1220^{\circ} \mathrm{F}$) or stored where the ambient temperature exceeds - 400 C to 750 C (-400 F to 1670 F).

2-12. INSTRUMENT MOUNTING.

2-13. Bench Use.

2-14. The front of the 34750A may be elevated for operating convenience by lowering the tilt stand on the bottom module.

2-15. Rack Use.

2-16. Figure 2-2 shows the available kits for rack mounting the various module combinations of the 3470 series of instruments.

2-17. REPACKAGING FOR SHIPMENT.

2-18. The following paragraphs contain a general guide for repackaging the instrument for shipment. Refer to Paragraph 2-19 if the original container is to be used; 2-20 if it is not. If you have any questions, contact your nearest -hp- Sales and Service Office.

NOTE

If the instrument is to be shipped to Hewlett-Packard for service or repair, attach a tag to the instrument identifying the owner and indicating the service or repair to be accomplished. Include the module number and full serial number of the instrument. In any correspondence, identify the instrument by model number and full serial number.

2-19. Place the instrument in the original container with appropriate packing material and seal well with strong tape or metal bands.

Figure 2-2. Rack Mount Kits
$2-20$. If the original container is not to be used, proceed as follows:
a. Wrap the instrument in heavy paper or plastic before placing in an inner container.
b. Place the packing material around all sides of the instrument and protect the panel face with cardboard strips.
c. Place instrument and inner container in a heavy carton or wooden box and seal with strong tape or metal bands.

2-21. POWER CORDS AND RECEPTACLES.

2-22. Figure 2-3 illustrates power receptacle (wall outlet) configurations that are used throughout the United States and in other countries. The -hp- part number shown directly below each receptacle drawing is the part number for a 34750A power cord equipped with the appropriate mating plug for that receptacle. If the appropriate power cord is not included with the instrument, notify the nearest -hp- Sales and Service

Office and a replacement cord will be provided. The 34750A power cord, power input receptacle and mating connectors meet the safety standards set forth by the International Electrotechnical Commission (IEC).

Figure 2-3. Power Receptacles.

Rev. A 2-3

SECTION III. OPERATING INSTRUCTIONS

3-1. INTRODUCTION.

3-2. This section contains instructions and information which will assist you in proper operation of your Model 34750A Display Module. A signal conditioning module (Model 34701A, 34702A or 34703A) is required for proper operation of the display module.

3-3. REAR PANEL FEATURES.

3-4. The rear panel of the Model 34750A is shown in Figure 3-1.

DO NOT PLUG IN THE POWER CORD WITHOUT FIRST SELECTING THE PROPER LINE VOL TAGE.

3-5 WARM-UP.

3-6. A warm-up period of 1 hour is normally required for the instrument to achieve specified accuracy. The instrument should be calibrated with the bottom and center modules to be used with the instrument.

NOTE
Due to temperature change inside the instrument between line and battery operation, the + and -references must be readjusted when changing modes to achieve specified accuracy. The nominal temperature change between line and battery operation is - 150 C

3-7. OPERATION WITH PLUG-ON MODULES.

3-8. Information regarding operation of the instrument with a plug-on module can be found in the Operating and Service Manual for the plug-on.

Figure 3-1. 34750A Rear Panel.

INSTALLATION OR REMOVAL OF PLUG-ON
MODULES IS TO BE MADE BY QUALIFIED
PERSONNEL ONLY.

Rev. A 3-1

1. This measurement example is for a dc voltage of +1.2 volts measured on the 1 volt range of an -hp- Model 34701A. For this measurement the voltage at A and B is +1.2 volts for the entire measurement sequence.
2. Prior to to (during ${ }_{5} \mathrm{~T}_{\mathrm{O}}$ of the previous measurement) S_{A} was connected to ground and S_{B} was closed. The Auto-Zero circuit was enabled and a voltage applied to the + input of the Integrator Amplifier (point F) that causes the voltage at E to be 0 volts. This voltage will stay at F until the Auto-Zero circuit is-again enabled after the value of the input voltage has been determined.
3. At t_{0}, S_{A} is switched to the output of the signal conditioning unit and the Input Amplifier is given time to respond to its new value during ${ }_{o} T_{1} . \mathrm{S}_{\mathrm{B}}$ is open during this time interval so the output of the Integrator remains at 0 volts.
4. S_{B} is closed at t_{1} and the Integrator output ramps to a level proportional to the input voltage during ${ }_{1} T_{2}$.
5. The output level of the Integrator remains constant during ${ }_{2} T_{3}$ because S_{B} opens at t_{2}. S_{A} is switched to one of the reference voltage positions (- Ref. for a + voltage at B) and the Input Amplifier Is given time to achieve its new output level.
6. During ${ }_{3} T_{4}$ and ${ }_{4} T_{5}, \mathrm{~S}_{\mathrm{B}}$ is closed and the Integrator output ramps toward 0 volts. When zero detect occurs S_{A} is switched to ground and the Auto-Zero circuits are enabled. During the time interval from t_{3} until zero detect occurs the output of a fixed frequency oscillator is counted. The counts accumulated during this time interval are transferred to storage buffers and displayed as measured result on the front panel.
7. The auto-zero cycle begins at zero detect. Zero detect can occur as late as t_{5}. The time interval ${ }_{5} T_{0}$ provides adequate time for the Auto-Zero circuits to complete the auto-zero cycle.

Figure 4-1. Basic Block Diagram of 34750A

Rev. B 4-0

SECTION IV

THEORY OF OPERATION

4-1. INTRODUCTION.

4-2. The 34750A Display is a five-digit analog-todigital converter that utilizes the dual slope integrating technique and a LED (light-emitting diode) display. The 34750A is designed to operate with a signal-conditioning "Plug-On Module". The signal-conditioning unit converts the input signal to a dc voltage between ± 2 volts (± 1 volt full scale $+100 \%$ overrange) which is measured and displayed by the 34750A. A Basic Block Diagram of the 34750A (Figure 4-1) will be discussed in this section followed by a more detailed description of these blocks and the circuits involved.

4-3. Basic Measurement Sequence.

4-4. The dual slope integrating measurement technique employed by the 34750A is described with
waveforms and a timing sequence in Figure 4-1. Each measurement sequence is divided into six time intervals of equal length. Figure 4-1 shows the designations that will be used to identify the beginning of each time interval, the time intervals and a description of the measurement cycle.

4-5. ANALOG CIRCUITS.

4-6. Input Amplifier.

4-7. A stable gain of +3.5 is provided by the Input Amplifier (see Figure 4-2). Only one of the FET switches Q1 through Q4 is conducting at a time to provide an input to the amplifier. Bias current is minimized by the FET input stage of the amplifier. Adjustment R8 sets the output at TP1 to 0 V with point 1 grounded. The FET Bias Network is discussed in Note 1 of Figure 4-2

Figure 4-2. Simplified Diagram of the Input Amplifier.

4-8. Integrator.

4-9. The Integrator utilizes a high gain amplifier and a FET input stage to minimize the input current required by the amplifier. A simplified diagram of the Integrator is shown in Figure 4-3. Switch Q6 enables the Integrator during a measurement cycle. FET switch Q13 conducts during the auto-zero cycle to speed up the circuit response during auto-zero. This rapid response is required to quickly recover from overload conditions. The Auto-Zero feedback voltage for the Integrator and the Slope Amplifiers is stored on the Auto-Zero Capacitor. This voltage is applied to the gate of Q7B during the measurement cycle. The auto-zero cycle is discussed in more detail in Paragraph 4-12

Figure 4-3. Simplified Diagram of the Integrator Circuit.

4-10. Zero Detect Circuits.

4-11. The Zero Detect circuits consist of two amplifiers, each with a gain of 10, and a high gain comparator shown in Figure 4-4. The second amplifier has diode clamps between its output and the inverting input to
prevent amplifier saturation. Depending on the polarity of the input at point 1 with respect to point 2 the Comparator output is either +3 V or $0 \mathrm{~V}^{*}$. The polarity of the voltage at point 2 is determined by the output of the Input Amplifier. At zero detect the Integrator output passes through 0 V . This causes the signal at point 1 to momentarily swing to the polarity opposite that at point 2 . Accordingly, the Comparator Amplifier output switches to the level opposite the one that it previously held (i.e. + 3 V to O V or O V to +3 V . Adjustments R24 and R27 are used to calibrate the instrument for small input voltages.

4-12. Auto-Zero Cycle.

4-13 Figure 4-5 shows the 34750A circuits in the autozero mode. FET switch Q13 is conducting, which speeds up the recovery of the Integrator to a 0 volt output level (this is important when recovery from overload is required). When Q16 conducts the voltage on the Auto-Zero Capacitor becomes equal to the offset at point 2 with point 1 grounded. After the auto-zero cycle, Q13 and Q16 do not conduct until the next autozero cycle. The voltage acquired on the Auto-Zero Capacitor during the auto-zero cycle remains as offset compensation for the rest of the measurement cycle.

4-14. DIGITAL PROCESSING CIRCUITS.

4-15. The Model 34750A Digital Processing Circuits comprise an Algorithmic State Machine (ASM). Figure 46 shows a typical simplified block diagram of an ASM. The ASM is a sequential logic circuit that can be described completely with a flow chart. The "Next State Function" and "Output Function" blocks are combinational logic networks. A combinational network is a

Figure 4-4. Simplified Diagram of Zero Detect Circuits.

[^2]

Figure 4-5. 34750A Circuits shown in Auto-Zero Mode.
logical network whose output is completely determined by its present input states. Sequential logic circuits contain memory or storage elements such as flip-flops. As the circuits operate the state of the memory changes The memory elements may have one state at first and later take on another state. The "Next State" that the memory goes to is dependent on the "Present State", the Clock and the external inputs that are supplied to the logic circuit. The output is dependent on the external inputs and the "Present State" of the memory. The "Present State" of the memory is dependent on the past
sequence of inputs that have been applied.
4-16. The Algorithmic State Machine (ASM). The State Machine in the Model 34750A is shown in Figure 47 in block form. The inputs to the State Machine come from the Analog Circuits and the plug-on modules. The output consists of the Data Display of the instrument and logic signals which are applied to the various plug-on modules.

Figure 4-6. Block Diagram of Typical ASM.

Figure 4-7. ASM Simplified Block Diagram

4-17. Data Clock (Refer to Figure 4-8).

418. The Data Clock generates controlled pulses to which the timing of the analog to digital converter of the Model 34750A is synchronized.* Its frequency is determined by Crystal Y1. The crystal output is amplified by two inverting amplifiers (U6). The output of these amplifiers is then applied to the crystal to sustain oscillations. Buffer U7 is a unity gain amplifier which isolates the clock circuit and prevents loading of the clock by the external circuitry.

Figure 4-8. Data Clock.

4-19. Timing Generator Circuit (See Figure 7-8).

$4-20$. The Timing Generator consists of three D flipflops which generate signals A, B and C. Signal A is used to generate signal B, and signal B is used to generate signal C. The inverse of signal C (i.e., C) is then used to produce signal A (via gates U16 and U8). The various combinations of signals A, B and C determine the "State Codes" of the instrument timing. Figure 4-9 shows the timing relationships for the Timing Generator and provides a flow chart indicating the sequence in which events occur within the instrument. State Codes 101 and 010 are illegal and will be entered only if caused to do so by transient pulses generated

[^3]when the instrument is turned on. If an illegal state is entered, the Timing Generator flip-flops will be cleared on the next reset pulse. This sets the instrument to state 000 , at which time an auto-zero cycle occurs. The timing sequence then continues in its normal fashion.

4-21. Zero Detect and Data Transfer Circuits (Refer to Figure 410).

$4-22$. The Zero Detect circuits generate a voltage transition when the integrator waveform reaches approximately 0 V . The polarity of the transition is determined by the polarity of the input. This pulse is then used by the Data Transfer circuits to initiate the following sequence of events:

The polarity of voltage on the D input of Flip-Flop U18 during input enable determines whether the flipflop is set or reset. If a negative voltage is connected to the 34750A input, the Q output of the flip-flop is high (> 3 V). The zero detect pulse, in this instance, is a negative transition. For a positive input the Q output of the flip-flop is high and the zero detect pulse is a positive transition. If the Q output is high the + Reference Gate is enabled. If Q is high the - Reference Gate is enabled. The zero detect pulse is applied to the Zero Detect Gates. These gates generate a positive going transition regardless of the polarity of the Zero Detect Pulse. Normally, oscillations occur on the Zero Detect waveform after the initial transition at zero detect. The Zero Detect Catcher is a flip-flop which responds to only
the first transition of the positive pulse from the zero detect gates. It provides a negative going pulse to the Data Transfer Timing circuits. The Data Transfer Tuning circuits inhibit the main clock during the period of data transfer within the Data Accumulator. The Transfer Tuning Waveforms in Figure 4-10 show the relationship between the Data Clock Disable pulse and the Transfer Pulse.

The length of the Data Clock Disable TM 11-6625-2809-

A. State 000

1. Mainframe auto-zero cycle occurs (LMATZ).
2. Integrator enabled.
3. Cycle in auto-zero if "Hold" line is low.
B. State 001
4. Input enabled (LIEN).
5. Integrator disabled.
C. State 011
6. Input enabled (LIEN).
7. Integrator enabled (LIGE) starts run-up.
8. Polarity of input determined.
D. State 111
9. Input disabled.
10. Integrator disabled.
11. Proper reference voltage selected (LNRE or LPRE).
a. -reference selected for + input.
b. $\quad+$ reference selected for - Input.
E. State 110

G\&H. States 010 and 101
These are illegal states and are not normally entered. If the instrument enters an illegal state, it cycles through states 010 and 101 until the reset pulse occurs. At reset, the Timing Generator is cleared to state 000 and a normal measurement cycle begins.

Figure 4-9. 34750A Flow Chart.

Figure 4-10. Zero Detect and Data Transfer Timing

4-23. Data Accumulator and Storage (Refer to Figure 7-7.

4-24. The Data Accumulator counts pulses from the Data Clock starting at the beginning of run-down (T3 on Figure 4-9 and continuing until zero detect. The Data Accumulator reset pulse is generated at the beginning of run-down. This pulse resets the 5 decades of the Data Accumulator Counter. At zero detect the Transfer Pulse goes low and the Data Clock is inhibited. Each decade of the accumulated count is then transferred in 8421
parallel BCD form to storage elements within the Data Accumulator. This data is then scanned a decade at a time by signals X, Y and Z , and applied to the BCD output lines.

4-25. Data Display and Control Circuits (Refer to Figure 4-11.

$4-26$. The Data Scanner controls the timing of the Display circuits. Signal X occurs at a 3 kHz rate. Signals Y and Z occur at a 1.5 kHz rate. Scanner clock and

Figure 4-11. Data Display Circuits.

Right Half/Left Half character scan occur at a 6 kHz rate. The BCD data from the Data Accumulator is converted to a 10 line code. The desired lines go low (ground) when selected, providing a ground path for current through the Right Half/Left Half Driver Transistors and the LED chips connected to the lines. Each character is individually scanned beginning with the least significant and proceeding to the most significant (right to left as you face the instrument). Each character is also divided into a left and right half. The selected LED's of the right half are illuminated first followed by those of the left half.

4-27. Reset Timing (Se Figure 4-12).

4-28. The Reset Timing circuits generate a reset pulse at the beginning of run-down (T3) in the measurement cycle. When signal "A" goes low the +32 counter (U12) is reset causing Pin 2 of U8 to go low and pin 1 to go high. This initiates the Reset Pulse and enables the flipflops in the -4 counter (U11). Figure 4-12 shows the
timing relationship of the reset pulse to signal A of the Timing Generator. The Data Clock is divided by a factor of 128 (4×32). Pin 2 of U8 goes high after approximately 128 counts of the Data Clock causing Pin I of U8 to go low. This completes the reset sequence for one measurement cycle.

4-29. Least Significant Digit Blank (Refer to Figure 7-7).

4-30. Depending upon the signal conditioning module used it is sometimes necessary to blank the last digit of the Model 34750A. This is accomplished by grounding Pin 12 of the character generator during the time the least significant digit is scanned. Two "Nor" Gates (U13) and one "Nand" Gate (UI4) are used to do this. As indicated on the schematic diagram, all inputs to the Nor Gates (Pins 5, 6, 9 and 8) must be low in order to obtain a low at Pin 11 of U14. A low at Pin 11 of U14 will blank the digit.

Figure 4-12. Reset Timing.

Rev. A 4-7

SECTION V. MAINTENANCE

5-1. INTRODUCTION.

5-2. Operational checks and Adjustment Procedures for the Model 34750A are contained in this section of the manual. Performance tests relating to the operation of a 34750A and a plug-on module are contained in the manual for the plug-on module (34701A, 34702A or 34703 A).

INSTALLATION OR REMOVAL OF PL UG-ON MODULES IS TO BE MADE BY QUALIFIED PERSONNEL ONL Y.

5-3. OPERATIONAL CHECKS.

5-4. The following checks will assist in determining if your instrument is functioning correctly. These tests are not intended to check instrument specifications.

5-5. Connect an 11456A Readout Test Card to the model 34750A as shown in Figure 5-1. Use a short clip lead to make the required connections listed in Table 52. and compare the test results with those indicated.

5-6. ADJUSTMENT PROCEDURE.

5-7. \square Paragraphs 5-12 through 5-16 are adjustment procedures for the Model 34750A Display. These procedures require the use of a 34701 A, 34702A or 34703A plug-on module. We recommend that these procedures be performed only if the performance checks show that the instrument does not meet its specifications. If the instrument cannot be adjusted to meet its specifications, refer to Troubleshooting (Paragraph 7-3) in Section VII. Table 5-1 lists test equipment recommended for the adjustment procedures and troubleshooting.

WARNING

DISCONNECT THE POWER CORD BEFORE REMOVING THE COVERS.

Table 5-1. Recommended Test Equipment.

Instrument Type	Required Specifications	Recommended Model
DC Digital	4 digit resolution	- hp- Model
Voltmeter	Accuracy:	
	$\pm(.03 \%$ of reading	34740 A
	$\pm 0.01 \%$ of range $)$	
DC Standard	Accuracy:	-hp- Model 740B
	Accurge	
	$\pm(0.002 \%$ of setting	
	$\pm 0.004 \%$ of Range $)$	

Figure 5-1. 11456A Readout Test Card.
Table 5-2. Operational Checks.

Connections on 11456A Assembly	Display Expected	Refer to the following Areas of the Manual if the Correct Display is not obtained.
Input Pin to + Ref.	+ 1.00000 (+ 2 counts)	Paragraph 5-16, Figure 7-3
Input Pin to - Ref.	- 1.00000 (+ 2 counts)	Paragraph 5-16. Figure 7-3
DP1 to GND3	XXX.XX	Figure 7-3
DP2 to GND3	XX.XXX	Figure 7-3
DP3 to GND3	X.XXXX	Figure 7-3
DP4 to GND3	. XXXXX	Fiqure 7-3
	NOTE X represents any digit between 0 and 9 .	

5-8. Cover Removal.

5-9. In order to perform two of the adjustments in this section, it will be necessary to obtain access to the interior of the instrument. If your Display Module is connected to a plug-on module separate the two modules by pulling the slide lock levers, shown in Figure 3-1, to the rear and lifting the Display Module from the plug-on module. The 34750A Cover can then be removed by unscrewing a mounting bolt near the transformer (see Figure 5-2) and spreading apart two sets of plastic fingers which hold the Display printed circuit assembly in place. The printed circuit (p.c.) assembly is covered by a black metal shield which must also be removed. This is accomplished by unscrewing the four bolts holding it in place and lifting it off the p.c. assembly. Connect a plug-on module to the 34750A and apply power.

Figure 5-2. Cover Removal.

	WARNING
A NUMBER	OF BRASS TERMINAL.S
EXTENDED	FROM
MODULE	(PMI)
INTO POWER	

5-10. Adjustment Locator.

5-11. Figure 5-4. shows the location of all adjustments within the Model 34750A.

NOTE

The following procedures require a properly functioning plug-on module.

Refer to the Operating and Service manual of the associated plug-on module if it appears to be malfunctioning.

5-12. Power Supply Adjustment.

a. Connect a dc voltmeter (-hp- Model 34740A/ 34701A or equivalent) between AIGNDI and the cathode of AICR25.
b. Observe the voltmeter and adjust AIR69 for +12 $\mathrm{V} \pm 10 \mathrm{mV}$.

5-13. INPUT AMP. OFFSET ADJUSTMENT.

a. Connect TP4 of the Al assembly to GNDI.
b. Connect a digital voltmeter (-hp Model 34740A/ 34701 A or equivalent) to TPI, using GNDI as reference, and adjust AI R8 for $0 \mathrm{~V} \pm 1 \mathrm{mV}$.

NOTE
Before proceeding, all covers removed ip Parlagraph 5-8 should be reinstalled. The instrument should then be allowed to warm up for approximately 2 hours. See Parlagraph 3-5 for information on instrument warm-up time.

5-14. ZERO DETECT COMPARATOR OFFSET.

5-3

a. Connect the equipment as shown ir Figure
b. Set the plug-on module to the 1000 V range and the DC STANDARD for a 20000 V output. (If a Model 34703A plug-on is used, set i ; for "MANUAL" operation.) Note the indication of the voltmeter display.
c. Invert the input and again observe the display. If the indications in steps b and c do not agree, adjust the "Z" (ZERO) control on the rear panel until the display indication for both polarities is the same.

5-15. ZERO DETECT HYSTERESIS ADJUSTMENT.

a. With the instruments connected and set as in Paragraph 5-14 adjust the " H " Hysteresis on the rear panel to give a display indication of 20 counts.

Figure 5-3. Zero Detect Comparator Offset Adjustment

5-16. REFERENCE VOLTAGE ADJUSTMENTS.
a. Apply +1.00000 V to the plug-on module input from the DC STANDARD. The plug-on module should be set to the 1 V range.
b. Adjust the " + " control on the rear panel of the instrument for $+1 \mathrm{~V} \pm$! count.
c. Apply -1.00000 V to the Model 34750A input from the DC STANDARD.
d. Adjust the "-" control on the rear panel of the instrument for - $1 \mathrm{~V}+1$ count.

Figure 5-4. Chassis Mounted Component and Adjustment Locator.

Rev. A 6-0

SECTION VI
 IDENTIFICATION OF PARTS

6-1. INTRODUCTION.

6-2. This section contains information to identify parts Table 6-1 lists parts in alphameric order of their reference designators and indicates the description, -hpPart Number of each part, together with any applicable notes, and provides the following:
a. Total quantity used in the instrument (Qty column). The total quantity of a part is given the first time the part number appears.
b. Description of the part. (See list of abbreviations below.)
c. Typical manufacturer of the part in a fivedigit code.
d. Manufacturers part number.

6-3. Miscellaneous parts are listed at the end of Table 6-1.

6-4. DELETED

6-5. DELETED

6-6. DELETED

6-7. DELETED

6-8. PARTS CHANGES.

6-9. Components which have been changed are so marked by one of three symbols; i.e. Δ, Δ with a letter subscript, e.g. Δ_{a}, or Δ with a number subscript e.g. Δ_{10}. A Δ with no subscript indicates the component listed is the preferred replacement for an earlier component. A Δ with a letter subscript indicates a change which is explained in a note at the bottom of the page. A Δ with a number subscript indicates the related change is discussed in backdating IAppx A). The number of the subscript indicates the number of the change in backdating which should be referred to.

6-10. PROPRIETARY PARTS.

6-11. Items marked by a dagger (t) in the reference designator column are available only for repair and service of Hewlett-Packard instruments.

Rev. A 6-1

Table 6.1 IDENTIFICATION OF PARTS
Table 6-1. IDENTIFICATION OF PARTS

See introduction to this section for ordering information
Δ_{b} This component did not exist on instrument Serial No's. 1304A00275 and below.

Table 6-1. IDENTIFICATION OF PARTS - Continued

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
4114	9170-0894		BEAD:SHIELDING	2848 C	9170-0894
All 5	$9170-C 894$		BEAD:SHIELDING	2848 C	$9170-0894$
All 6	$9170-0894$		BEAD: SHIELDING	28480	9170-0894
A1L7	9170-0894		BEAD: SHIELDING	28480	9170-0894
4101	1855-0208	6	TSTR: SI	17856	2N4117
4102	1855-0305		TSTR: 51	80131	2 N41174
4103	1855-0305		TSTR:SI	80131	2N41174
A104	1855-0305		TSTR:S1	80131	2N41174
4105 4106	$1855-0418$ $1855-0093$	1	TRANSISTOR:FET	28486	$1855-0418$
A106	1855-0093	1	TSTR:FET N-CHANNEL	2848 C	1855-0093
4107	1855-0308	1	TSTR:SI NPN DUAL	28480	1855-0308
1108 109	1853-0020	5	TSTR:S1 PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FRDM 2N3702)	28480	1853-0020
Al09 Alal	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:S] PNP(SELECTED FROM 2N3702)	28480 28480	$1853-0020$ $1853-0020$
41012	1853-002C		TSTR:SI PNP(SELECTED FRDM 2 N37021	28480	1853-0020
41013	1855-0412		TSTR:FET	28480	1855-0412
A1014	1854-0071	5	TSTR:S1 NPNISELECTED FRDOM 2N3704)	2848C	1854-0071
A1015	$1854-0071$		TSTA:SI NPNISELECTED FROM 2N3704)	28480	1854-6071
41915	1855-0412		TSTR:FET	28486	1855-0412
41917	1853-c020		TSTR:SI PNPISELECTED FRDM 2N3702:	28480	1853-0020
41018	1853-0089	1	TSTR:SI PNP	80131	
11819 41021	$1854-0094$ $1854-0071$	1	TSTR: SI NPN	80131	$2 W 364 \theta^{\circ}$
11021 41022	$1854-0071$ $1854-0071$		TSTR:S1 NPNISELECTED FROM 2 2N3704, TSTR:SI NPNISELECTED FRDM	28480 28480	1854-0071
41023	1854-0039	1	TSTR:SI NPN	80131	2N3053
41024 41025	$1853-0016$ $1553-6051$	1	TSTR:SI PNP TSTR:SI PNP	80131	2N3638 2N4037
AlR1	0684-5641		R:FXD CONP 560K DHM $10 \mathrm{ET} 1 / 4 \mathrm{~W}$	801121	244037 $C 85641$
A1R2	C6B4-2241	3	R:FXD COMP 220K OHM 10\% 1/4W	01121	CB 2241
A1R3	0684-2241		R:FXD COMP 220K DHM 10 E 1/4N	01121	C8 2241
A184	$0684-2241$ $0684-331$		R:FXD COMP R:FXD COMP 3	01121	$\begin{array}{ll}\text { CA } 2241 \\ \text { CB } & 3331\end{array}$
\triangle A1R6	0757-0448	6	R:FXD FLM 15K OHM 1\% 1/8w	28480	0757-0449
	C757-0446		R:FXD FLM I5K OHM 1\% 1/8W	28486	0757-0449
AlR	2100-2061	1	R:VAR FLM 20C OHM 108 LIN 1/2w	28480	2100-2061
AlR9	0757-0442	5	R:FXD MET FLH 10.0 K OHM $151 / 8 \mathrm{~W}$	28480	0757-0442
A1R11	0698-3558	3	R:FXD MET FLH 4.02K OHM $151 / 8 \mathrm{H}$	2848 C	0698-3558
A1R12	0757-0978	1	R:FXD FLM 95.3K DHN IE 1/8N	28480 28480	$0757-0978$ $0698-3271$
A1813	0757-0449		RiFXO FLM 20 K OHM 18 1/8N	28480	0757-0449
A1214	6757-0449		R:FXD FLM 20K OHW 15 I/BN	28480	0757-0449
A1R15	0684-2701	1	R:FXD COMP 27 OHM $1091 / 4 \mathrm{~W}$	01121	CB 27 cl
AlR16	5684-2711	1	R:FXO COMP 270 OHM $1021 / 4 \mathrm{~N}$	01121	CB 2711
A1R17	0757-0283	1	R:FXD MET FLM 2.00 K OHM $181 / 8 \mathrm{H}$	28480	0757-0283
A1RIS	0757-0449		R:FXD FLM 20 K OHM 15 1/8M	28480	0757-0449
A1R19	0698-3443	1	R:FXD MET FLM 297 OHM 15 1/8M	28480	0690-3443
A1R21	c757-0280	1	R:FXO MET FLM 1K OHM 1\% 1/8W	28480	0757-0200
A1R22	0757-0288	1	R:FXD HET FLM 9.09\% OHM it 1/8H	28480	0757-0288
41823	0698-4428	1	R:FXD FLN 1.69K OHM 18 1/8M	28480	0690-4428
A1R24	2100-3207	1	R:VAR CERMET 5K OHM LOE LIN 1/2W	28480	2100-3207
A1R25	0698-3445		R:FXO MET FLM 348 OHM $181 / 8 \mathrm{~m}$	28480	0690-3445
A1R26	0698-3159	1	R:FXO MET FLA 26.1K OHM 17 1/8W	28480	0690-3159
41827	2100-3353	1	R:VAR CERMET 20K OMM 1CE $1 / 2 \mathrm{~W}$	28480	2100-3353
A1828	1810-0171	1	RES. METHORK $5 \times 2.7 \mathrm{~K}$ OHM	28480	18100171
A1R29	0884-1031	5	R:FXD COMP 10K OHM IOE 1/4W	61121	CE 1031
- A1R31	1810-0151	1	RESISTIVE NETWURK	28480	1010-0151
A1R32	0684-1031		R:FXD COMP 10x OHM $1051 / 4 \mathrm{~N}$	01121	C6 1031
A1R33	0684-1031		R:FXO COMP 10K OHM $10 \pm 1 / 4 \mathrm{M}$	01121	CB_{681031}
A1R34	0884-1031		R:FXO COMP IOK OHM 108 $1 / 4 \mathrm{~N}$	C1121	C8 1031
A1R35	2757-6449		6:FXO FLM 20K JHM 18 1/8w	25480	0757-0449
$\begin{array}{r} \operatorname{A1R36} \\ A_{g} \operatorname{A1R37} \end{array}$	0684-5631 080-3288	2	R:FXD COMP 56K OHM 108 1/4M R:FXD MET FIM 10.0K OHM 18 1/8M	01121	C8 5631
4. $\begin{array}{r}\text { ark } \\ \text { A1R3 } \\ \text { A }\end{array}$	$0680-3288$ $0757-0430$	1		28480 28480	$0757-0442$ c757-0430
A1839	0757-0442		R:FXO MET FLM 1C.OK OHM I\% $1 / 8 \mathrm{H}$	28480	c757-0442
A1841	C698-3558		R:FXO MET FLM 4.02K OHM IK 1/8M	28460	0690-3558
A1R42	0690-3268	1	R:FXD FLM 11.5K JHM 18 1/8M	28480	0690-3268
A1R43	0684-3631		R:FXO COMP 56K OHM 108 1/4M	01121	CA 5631
A1R4 4	C690-3499	1	R:FXD FLM 40.2 K ONM IT I/8N	28480	0690-3499
A1R45	0684-1031		R:FXD CDMP 16K DHM 10 ES I/4N	01121	C8 1031
A1R46	0684-3321	3	R:FXD COMP 3300 DHM 105 1/4W	01121	C8 3321
A1R47 A1R48	$0684-3321$ $1810-0139$		R:FXD COMP 3300 DHN IC: 1/4N	01121	
A1R48 A1R49	1810-0139	4	RES. NETWORK $4 \times 22 \mathrm{LH}$ OHM 5\% 0.125 W Ed.	2848 C	$1810-c 139$
A1R49 A1R	1810-0172	1	RE S. NETMORK	2848 C	1810-0172
A1R51 $41 R 52$	0684-3321		R:FXD COMP 3330 DHM 109 1/4W	01121	C8 3321
A1R52	0698-3153		R:FXO MET FLN 3.83K OHM $151 / 8 \mathrm{H}$	23430	0518.3163

See introduction to this section for ordering information
Δ_{a} Use for all replacement. Replace all components marked A_{a} if any one is replaced

Rev. B 6-3

Table 6-1. IDENTIFICATION OF PARTS - Continued

Rev. A 6-4

Table 6-1. IDENTIFICATION OF PARTS - Continued

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
				80131 80131 800131 80131 800131 801	
		$\frac{1}{2}$	 R: FKD Conp 82 Ohm 108 1/44	80131 ${ }^{c} 1121$	2N3904 18540071 $\begin{array}{ll}\text { CB } & 4721 \\ \text { CB } & 6201\end{array}$
		$\begin{aligned} & \frac{1}{1} \\ & \frac{1}{2} \end{aligned}$	R:FXD COMP 82 OHM 108 $1 / 4 \mathrm{M}$ 		
4205 -	1820-0571	1	IC:TTL NUMERIC DISPLAY CHARACTER GEN. CHASSIS MOUNTED COMPDNENTS	28480	1820-0571
			FUSE:0.5 AHP 250V FUSE:CARTRIOGE $1 / 4$ AMP 250 V CONNECTOR:14 PIN	$\begin{aligned} & 75915 \\ & \substack{7515 \\ 62660} \end{aligned}$	
		1		cizers	
${ }^{1}$	9100-3293	1	transfor her Pomer	${ }^{28480}$	9100-3293
wi	${ }^{\text {8120-1348 }}$	1	CABLE ASSY:POWER, DETACHABLE hiscellaneous	70903	*HS-7041
			CASE Shielo:poner input protection CABLE(FROM XA2TO MOTHER BOARD) EL:FRDNT		
		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	NAMEPLATE OECAL PLATE:SERIAL ABEL: INFDRMATION		
	0370.2159 1600.0421 0340.0787 0340.0787 1200.0423		 	$\begin{gathered} 28480 \\ \substack{28480 \\ 28870 \\ 28880 \\ 2380} \end{gathered}$	
		$\begin{array}{r} 2 \\ 1 \\ 4 \\ 4 \end{array}$	HEAT SINK: TRANSISTOR SHIELD ASSY: TRANSFOHWER SHIELD ASSY: CABLE: INPUT SOCKET: IC CONTACT (FOR DISPLAY)	$\begin{aligned} & 07381 \\ & 28880 \\ & 28880 \\ & 00779 \end{aligned}$	
		$\begin{gathered} 1 \\ \vdots \\ 1 \end{gathered}$	NSULATOR:SPRING) FOR 01 sLIDE LOCK, BALCK, LEET	$\begin{aligned} & 28480 \\ & \left.\begin{array}{l} 28880 \\ \hline 88480 \\ 28880 \\ 24800 \end{array}\right) \\ & \hline \end{aligned}$	

See introduction to this section for ordering information
Δ Use for all replacement.
Rev. C 6-5

SECTION VII
 CIRCUIT DIAGRAMS
 TROUBLESHOOTING

7-1. INTRODUCTION.

$7-2$. This section of the Operating and Service Manual contains troubleshooting information and circuit diagrams for the Model 34750A Display Module. Included are troubleshooting trees, a functional block diagram, schematic and component location diagrams and timing diagrams

7-3. TROUBLESHOOTING.

7-4. Troubleshooting Trees.

7-5. \square Figures $7+1$ through 7-3 are troubleshooting trees designed to assist in the isolation of malfunctions. Table 7-1 lists the troubleshooting trees and their respective figure numbers.

Table 7-1. Troubleshooting Trees.

Figure	Troubleshooting Trees
$7-1$	Power Supply Troubleshooting Tree
$7-2$	Analog Troubleshooting Tree
$7-3$	Digital Troubleshooting Tree

7-6. Troubleshooting Procedures

7-7. The following procedure is recommended for troubleshooting the Model 34750A.
a. Ensure the signal conditioning plug-on is functioning properly. Normally, if the Model 34750A passes the operational checks given in Paragraph 5-3, the Display Module is functioning properly and the signal conditioning module is malfunctioning. If you have checked the signal conditioning module and found it to be good proceed to step b.
b. Determine the exact symptoms of the failure. This can usually be accomplished by attempting the performance tests for the instrument. These procedures are found in the Operating and Service Manual for the signal conditioning plug-on module. Often this method will isolate the trouble to a particular circuit which affects the parameter under test.
c. Once the problem has been characterized, assuming the instrument is not completely dead, attempt the Adjustment Procedures outlined in Section V. Some apparent malfunctions can be corrected by these adjustments. Inability to obtain a correct adjustment can also help in localizing the problem.
d. Check for burned or loose components, or other conditions which might be the source of trouble.
e. Begin with the Power Supply Troubleshooting Tree (No. 1). If the power supplies are functioning properly the tree will quickly lead to the troubleshooting tree for either the analog or the digital portion of the instrument.
f. If the end of a tree is reached without finding the trouble, carefully recheck the symptoms to ensure you have interpreted them properly. Using the schematics, voltages and timing waveforms in Section VII (Figures 75 through 7-8) attempt to localize the malfunction. The problem can usually be isolated to the analog or digital section by connecting the test jumper shown in Figure 54 to "B". A +1.00000 should be displayed. If it is not, the digital section is malfunctioning.

7-8. FUNCTIONAL BLOCK DIAGRAM(Figure 7-4).

7-9. The Functional Block Diagram is a detailed block diagram showing the overall relationship between circuit elements of the Model 34750A. The diagram shows all adjustments within the Model 34750A and provides waveforms that should be helpful in troubleshooting.

7-10. TIMING DIAGRAM (Figure 7-5).

7-11. Figure 7-5 shows the timing relationships between the major signals generated within the Model 34750A. Each signal has been assigned a number within a circle, e.g. (3), which corresponds to an identical number on one of the schematic diagrams. Illustrations of the 34750-66501 and 34750-66502 printed circuit assemblies, showing the physical location of each signal is also provided.

7-12. SCHEMATIC DIAGRAMS (Fiqures 7-6, 7-7 and 7-8).

7-13. The circuits contained within the Model 34750A are shown in the schematic diagrams. These diagrams are provided to assist in troubleshooting the instrument.

7-14. COMPONENT LOCATION DIAGRAMS.

7-15. Component Location Diagrams are provided with each schematic to show the location of the various components mounted on the printed circuit assemblies. Each component is identified by a reference designator.

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. PREFIX WITH ASSEMBLY OR SUBASSEMBLY DESIGNATION(S) OR BOTH FOR COMPLETE DESIGNATION.
2. COMPONENT VALUES ARE SHOWN AS FOLLOWS UNLESS OTHERWISE NOTED.

> RESISTANCE IN OHMS CAPACITANCE IN MICROFARADS INDUCTANCE IN MILLIHENRIES
3.

DENOTES EARTH GROUND.
USED FOR TERMINALS WITH NO LESS THAN A NO. 18 GAUGE WIRE CONNECTED BETWEEN TERMINAL AND EARTH GROUND TERMINAL OR AC POWER RECEPTACLE.
4. DENOTES FRAME GROUND. USED FOR TERMINALS WHICH ARE PERMANENTLY CONNECTED WITHIN APPROXIMATELY 0.1 OHM OF EARTH GROUND.
5.

DENOTES GROUND ON PRINTED CIRCUIT ASSEMBLY. (PERMANENTLY CONNECTED TO FRAME GROUNDI.
6.

ANY LETTER OR NUMBER IN TRIANGLE DENOTES A SPECIAL GROUND.
7.

DENOTES ASSEMBLY.
8.

DENOTES MAIN SIGNAL PATH.
9.
 FEEDBACK PATH.
10.

DENOTES FRONT PANEL MARKING.
11.

DENOTES REAR PANEL MARKING.
12.

DENOTES SCREWDRIVER ADJUST.
13.

* aVERAGE VALUE SHOWN. optimum Val. ue selected at factory. the value OF THESE COMPONENTS MAY VARY FROM ONE INSTRUMENT TO ANOTHER.

14.

DENOTES SECOND APPEARANCE OF A CONNECTOR PIN
15.

92
DENOTES WIRE COLOR: COLOR CODE SAME AS RESISTOR COLOR CODE. FIRST NUMBER IDENTIFIES BASE COLOR, SECOND NUMBER IDENTIFIES STRIP.
16. ALL RELAYS ARE SHOWN DEENERGIZED.
17. WAVEFORMS AND AC VOLTAGE MEASUREMENTS WERE MADE WITH RESPECT TO CHASSIS GROUND USING AN OSCILLOSCOPE WITH A 10:1 DIVIDER PROBE (10 MEGOHM, 10 pF). THE VOLTAGE LEV. ELS SHOWN ON THE WAVEFORMS ARE ACTUAL VOLTAGE LEVELS AND ARE NOT TO BE CONFUSED WITH OSCILLOSCOPE SETTING. THE VOLTAGE LEVELS SHOWN ARE NOMINAL AND MAY VARY FROM ONE INSTRUMENT TO ANOTHER. A VARIATION OF $\pm 10 \%$ IN MEASUREMENTS SHOULD bE ALLOWED.
18. DC VOLTAGE LEVELS WERE MEASURED WITH RESPECT TO CIRCUIT GROUND USING A VTVM WITH 10 MEGOHM INPUT IMPEDANCE. THE VOLTage levels shown are nominal and may VARY FROM ONE INSTRUMENT TO ANOTHER DUE TO CHANGE IN TRANSISTOR CHARACTERISTICS. A VARIATION OF $\pm 10 \%$ SHOULD BE ALLOWED.

A

DENOTES BUFFER

A

DENOTES INVERTER

A	B	0
1	1	1
1	0	0
0	1	0
0	0	0

A	B	Q
1	1	0
1	0	1
0	1	1
0	0	1

A

A	B	0
1	1	0
1	0	0
0	1	0
0	0	1

[^4]
APPENDIX A

DIFFERENCE DATA SHEET

A-1. INTRODUCTION.

A-2. This section contains backdating information which adapts this manual to instruments with serial numbers lower than that shown on the title page.

A-3. CHANGE SEQUENCE.

A-4. Changes are listed in the serial number order that they occurred in the manufacture of the instrument. However, in adapting this manual to an instrument with a particular serial number, apply the changes in reverse order. That is, begin with the latest change and progress to the earliest change that applies to the serial number in question. Table A-1 lists the serial numbers to which each change applies.

A-5. PARTS NOT INCLUDED IN BACKDATING.

A-6. When replacing a part whose value or part number differs from the schematic diagram or parts list in this manual, yet is not listed in the following changes, use the replacement part number shown in Section VI. These parts are identified by the symbol Δ.

Table A-1. Manual Backdating Changes.

Instrument Serial Prefix	Make Manual Changes
1304 A00275 and below	1

CHANGE NO. 1
Applies to instrument Serial No's 1304A00275 \& below.
Change the 34750-90001 Component Locator as shown below:

By Order of the Secretary of the Army:
BERNARD W. ROGERS General, United States Army Chief of Staff
Official:
J. C. PENNINGTON

Major General, United States Army
The Adjutant General

Distribution:

Active Army:

HISA (Ft Monmouth) (26)
USAINSCOM (2)
COE (1)
TSG (1)
USAARENBD (1)
DARCOM (1)
TRADOC (2)
OS Maj Comd (4)
TECOM (2)
USACC (4)
MDW (1)
Armies (2)
Corps (2)
USACC-PAC (2)
USACC-EUR (2)
USACC-SO (2)
HQ, 7th Sig Comd (2)
Svc Colleges (I)
USASIGS (5)
USAADS (2)
USAFAS (2)
USAARMS (2)

ARNG \& USAR: None

For explanation of abbreviations used, see AR 310-50.

Figure 7-1. Power Supply Troubleshooting Tree.
7-3/7-4

Figure 7-2 24702A Schematic.

Rev. A 7-5/7-6

Figure 7-3. Analog Troubleshooting Tree.
7-5/7-6

Figure 7-4. Ohms Converter Troubleshooting Tree.
7-3/7-4

Figure 7-5. Digital Troubleshooting Tree.
7-7/7-8

Figure 7-5. Timing Waveforms
Rev. A 7-11/7-12

1. (3) 4.

Figure 7-6. Analog Signal Processor.
Rev. B 7-13/7-14

Figure 7-7. Digital Signal Processor.
Rev. B 7-15/7-16

Figure 7-8. Functional Block Diagram.
7-17/7-18

[^0]: This manual is an authentication of the manufacturer's commercial literature which, through usage, has been found to cover the data required to operate and maintain this equipment. Since the manual was not prepared In accordance with military specifications and AR 310-3, the format has not been structured to consider levels of maintenance.

[^1]: as instrument serial No's. 1212A00735 and below

[^2]: *The Comparator Amplifier is clamped internally to prevent it from swinging to the + and - power supply voltages

[^3]: * This does not include the scanning system which has its own clock.

[^4]: DENOTES "EXCLUSIVE" OR GATE

